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Abstract

This technical note proves that, for a smooth vector optimization problem on
a closed convex feasible set ordered by a pointed cone, the projected gradi-
ent direction depends continuously on the decision variable. Our argument is
based on a simple and direct proof via a fixed-domain reformulation of the sub-
problem. We then give a necessary and sufficient dual characterization of this
direction and show that its associated set-valued dual variable mapping is outer
semicontinuous.
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1 Introduction

We study the vector optimization problem on a nonempty closed convex set 2 C R™
endowed with a partial order induced by a closed, convex, pointed cone with non-empty
interior K C R™:

m&n{ F(z) |z eQ}, (1)

where F': R — R™, F(x) := (f1(z),..., fm(z)) is a continuously differentiable func-
tion and u <k v if and only if v —uw € K. When K is the nonnegative orthant



R, the induced order is the usual componentwise order, and this recovers the classi-
cal multiobjective optimization problem. This kind of problem arises in a wide range
of applications, including engineering, economics, finance, management science, and
medical treatment planning such as radiotherapy (see, e.g., [6, 37]).

A fruitful research line over the last two decades extends classical scalar algo-
rithms directly to vector-valued objectives rather than relying on scalarizations [13, 30]
or heuristics [28]. For unconstrained problems, Fliege and Svaiter first introduced
a steepest-descent method in [16], and subsequently Grana-Drummond and Svaiter
generalized that approach to vector optimization with a general ordering cone in
[24]. Several other extensions have since been proposed in the unconstrained set-
ting, including Newton-type [11, 18, 22, 25, 38|, quasi-Newton [27, 32-34], conjugate
gradient [21, 29], subgradient [2], and proximal algorithms [7]. For constrained prob-
lems, the projected gradient method, introduced by Grana-Drummond and Tusem
in [23], has played a central role. It has become the basis for several important
developments, including convergence analyses [3, 19, 40], inexact and nonmono-
tone variants [14, 20, 41, 42], and Barzilai-Borwein adaptations [9, 10, 31, 39].
Beyond projected gradient schemes, other approaches have also been investigated, such
as conditional gradient methods [1], interior-point [15] and augmented Lagrangian
schemes [8, 12], and SQP algorithms [17].

At each = € ), the projected gradient direction is defined as the solution of a
strongly convex scalar subproblem. While its optimal value is known to be continuous
[19, Proposition 3.4] (and serves as a standard merit function in convergence analy-
ses), the continuity of the direction itself had not been formally established. Although
this property can be regarded as an instance of the classical Mazimum Theorem of
Berge [4] and, more directly, of Hogan’s formulation [26, Corollary 8.1], no explicit
verification had been carried out in the projected gradient setting. We close this gap
by presenting a simple and direct proof, based on a fixed-domain reformulation of
the subproblem, making the result both rigorous and accessible to a broad audience.
In addition, we provide a necessary and sufficient dual characterization of the pro-
jected gradient direction and prove that the associated set-valued multiplier mapping
is outer semicontinuous. Since many advanced methods build on the projected gradi-
ent framework, our results not only reinforce the foundational convergence theory, but
also provide the rigorous basis needed to extend convergence and sensitivity analyses
to these more sophisticated algorithms.

This paper is organized as follows. In Section 2, we recall basic concepts, including
the definition of the projected gradient direction. Section 3 reformulates the projected
gradient subproblem in a fixed domain and proves the continuity of this direction with
respect to the decision variable. In Section 4, we derive a necessary and sufficient dual
characterization and establish the outer semicontinuity of the associated multiplier
mapping. Finally, Section 5 contains concluding remarks.

Notation: (-,-) is the usual inner product, and || - || is the Euclidean norm. Given
x € R™, JF(x) denotes the Jacobian of F' at . Po(x) will denote the projection of
r € R" onto Q, i.e., Po(z) = argmin,cq ||z — y||. If S C R™, then the conic hull and
the convex hull of S are denoted by cone(S) and conv(S), respectively. We denote by
A, the r-dimensional simplex, i.e., A, :=={A€R" | \; > 0,37, \; = 1}.



2 Basic concepts

Let K be a cone as in the introduction and denote its positive polar cone by K* =
{w € R™ | (w,y) >0, Yy € K}. Let C C K*\ {0} be a compact set such that
K* = cone(conv(C)). We can take, for example, C' = {w € K* | ||w|]| = 1}. Assuming
that K is polyhedral, we can choose C as the finite set of extreme rays of K*. In
particular, for the multiobjective optimization case where K = R'", C' can be taken
as the canonical basis of R™.

Define the functions D: R™ x R" — R and A: R" x R” = K* by

D(z,d) = max{ (JF(z)d,w) |w e C}, (2)
and

A(z,d) ={w e C | (JF(x)d,w) =D(x,d) }, (3)
i.e., A(z,d) is the set of maximizers in the definition of D.

Lemma 1 Let D: R" x R® — R and A: R" x R"™ = K" be defined as in (2) and (3),
respectively. Then the following properties hold:

(a) The mapping D(-,+) is continuous.
(b) For any fized x € R™, the subdifferential of the function d — D(x,d) is given by
OD(x,d) = JF(z)" conv A(z,d), Vde€R".

(c) Let xz,d € R" and w € conv. A(x,d). Then, w has a finite representation w =
22:1 Njzj with z; € A(x,d), A= (M1,...,\) €Ay, andr <m+1.

Proof Ttem (a) follows from [24]. Indeed, the continuity of D(z,d) follows from it being
the maximum of continuous affine functions over the compact set C. Item (b) is a direct
consequence of Danskin’s Theorem, see [5, Proposition 4.5.1]. Item (¢) is a direct consequence
of Carathéodory’s Theorem, see [5, Proposition 1.3.1]. O

We now recall the projected gradient direction associated with (1), see [23]. Given
x € (2, consider the following constrained scalar-valued minimization problem:

min { D(z,d) + [|d||* | d€ Q -z }, 4)

where Q —z == {p — x | p € Q}. The projected gradient direction for F at € Q is
defined by the unique optimal solution of (4), namely

v(z) = argmin { D(z,d) + [|d||* | d€ Q — = }. (5)

Note that, since the objective function of (4) is strongly convex and €2 is a closed and
convex set, v(z) is well defined for every x € . The following proposition will be
useful to provide a necessary and sufficient condition for the optimality of (4).



Proposition 2 [5, Proposition 4.7.2] Let ¢ : R™ — R be a convex function. A vector z*
minimizes @ over a convex set X C R™ if and only if there exists a subgradient q € dp(x™)
such that ¢ (x —z*) >0, for all z € X.

A well known characterization of the Euclidean projector is as follows.

Lemma 3 [5, Proposition 2.2.1] For every x € R"™, a vector z € Q is equal to Po(x) if and
only if (y — z)T(:v —2) <0 forally € Q.

The following elementary lemma ensures that a bounded sequence with a unique
limit point actually converges. Since the result is standard (see, for instance, [36,
Chapter 3]), we omit its proof.

Lemma 4 Let {uk} C R"™ be a bounded sequence. Assume that every convergent subsequence
of {uF} has the same limit point u* € R™. Then, the entire sequence {u*} converges to u*.

We finish this section by recalling a key concept regarding set-valued functions [35,
Chapter 5].

Definition 1 A set-valued mapping W : R™ = R™ is outer semicontinuous at z* €
dom W = {z € R" | W(z) # 0} if
lim sup W (z) € W(z"),

T—x*

where
limsup W (x) = {/\ €R™ | 2% o 2% and INF o X with AF e W(xk)} (6)

r—x*
If W is outer semicontinuous at every point in a set Q C dom W, then it is said to be outer
semicontinuous on §2.

3 Continuity of the projected gradient direction

To establish the continuity of the projected gradient direction, it is convenient to
reformulate problem (4) in terms of the translated variable p := x + d. This yields

min{D(x7p—x)+%|\P—m||2’pGQ}. (7)

Since the objective function in (7) is strongly convex and the feasible set €2 is closed
and convex, this problem has a unique minimizer. Accordingly, we define

u(z) == argmin { D(z,p—x) + i[lp—z|* | peQ }, (8)
so the projected gradient direction is given by

v(x) = u(z) — . (9)



Before proceeding, we record a boundedness property of u(-).

Lemma 5 The mapping u: Q — Q given by (8) is bounded on compact subsets of Q.

Proof The result follows directly from the boundedness of v(x) on compact subsets, estab-
lished in [20, Proposition 2.5], since u(xz) = =z + v(xz) and z ranges over a compact
set. O

The next theorem establishes the continuity of v(+).

Theorem 6 The projected gradient direction mapping v: @ — R" defined in (5) is
continuous on €.

Proof From (9), it suffices to prove that u(-) from (8) is continuous. Assume {zF} C Q is
such that zF — 2* € Q. We must show u(z¥) — u(z*). Since {z*} is bounded, by Lemma 5,
the sequence {u(xk)} is also bounded. Therefore, it has convergent subsequences. Pick any
convergent subsequence {u(z*¢)} and denote its limit by @. By definition of u(z**), we know
that

2
Dz u(zF0) — 2F) + : Hu(xkl) — o , VpeqQ.
Choosing p = u(z*) and letting £ — co in the above inequality, by the continuity of D
(Lemma 1 (a)), we find
D(z*,u—2x") + % Hﬁ — x*H2 <Dz, u(z™) —z*) + % Hu(az*) — x*H2 .
On the other hand, by the definition of u(z*) as the minimizer in (8) implies
D™, u(z™) — ) + % [|lu(z™) — :c*HQ <D, p—=x%)+ % l|lp - x*HZ , Vpeq.

Combining the two inequalities, we deduce that @ is also an optimal solution for the problem
(7) with = = z*. By uniqueness, % = u(z*). Hence every convergent subsequence of {u(z")}
has the same limit u(z*). By Lemma 4, this implies that the whole sequence {u(z")} converges
to u(z™). This shows that u(-) is continuous, and thus v(-) is also continuous in view of (9). O

2
< D@, p— M)+ §||p - 2™

As an immediate corollary, we obtain the continuity of the projected gradient merit
function, providing an alternative proof of [19, Proposition 3.4].

Corollary 7 The optimal value mapping 0 : Q — R, defined by
2
6(z) = D(z,v(x)) + 3llv(2)|",

15 continuous.

Proof This follows directly from Theorem 6, which establishes the continuity of v(-), together
with the continuity of D(-,-) (Lemma 1 (a)). O

Remark 1 Although the continuity of v(-) could also be deduced from general mazimum-
theorem results for parametric minimization (see, e.g., Hogan’s Corollary 8.1 [26]), the fized-
domain reformulation used above allows for a direct and elementary proof that avoids the
machinery of point-to-set mappings and is often easier to adapt to related contexts.



4 Dual characterization and semicontinuity of the
dual variables

We now provide a necessary and sufficient dual characterization of the projected gradi-
ent direction v(x) in the vector optimization setting. This not only clarifies its structure
but also enables the analysis of continuity properties of the associated dual variables.

Theorem 8 Let © € Q. Then v € R™ is the unique solution of (4) (i.e., v =v(z)) if and
only if there exists w € conv A(zx,v) such that

v=Po(z— JF(x)Tu’)) —x.

Proof Fix z € Q and set ¢(d) := D(z,d) + %Hde By Proposition 2, a vector v € R" is the
unique minimizer of ¢ on Q — z if and only if there exists a subgradient ¢ € dp(v) such that

g (d—v)>0, VdeQ—ux. (10)
From Lemma 1 (b), we know that every subgradient of ¢(v) can be written as ¢ = v +

JF(z) " for some @ € conv A(z,v). Substituting this expression for ¢ into (10) and letting
p = x + d, we obtain

(z— JF(x)Tu_) —(z+ v))T(p —(z+v)) <0, Vpe.
Lemma 3 shows that this inequality is equivalent to
v=Py(z— JF(a:)Tw) — .

Since each step is a two-way equivalence, the conclusion holds in both directions, and the
proof is complete. U

Theorem 8 refines [20, Proposition 4.1], which proved only the forward implication
and produced w € conv(C). Here we obtain an “if and only if” statement and show
that @ can in fact be chosen in the smaller set conv . A(x,v). Moreover, the theorem
shows that such a vector w can be interpreted as an optimal dual multiplier associated
with the scalar convex subproblem defining the projected gradient direction. It also
extends the result of [42, Section 5], valid for the particular case K = RY', to an
arbitrary ordering cone.

To further clarify the meaning of the dual vector @ in Theorem 8, we next show that
in the multiobjective case it admits a natural interpretation as a Lagrange multiplier.

Remark 2 In the multiobjective optimization case, the vector w in Theorem 8 admits a
direct interpretation as a Lagrange multiplier. Taking C as the canonical bases of R™, we get
conv A(z,v(z)) C Am and hence W € Ap,. By introducing an auziliary variable 7 € R and
rewriting (4) as

min 7+ Hd)? st. V@) Td<r(Ge{l,...,m}), deQ—ua,
T)
one sees that the components of w are precisely the KKT multipliers associated with the

constraints ij(x)Td < 7. Thus w is nothing but the Lagrange—multiplier vector for the
scalar reformulation of (4).



Theorem 8 also suggests a connection with the unconstrained steepest descent
direction in the multiobjective case, as detailed in the next remark.

Remark 3 Consider the multiobjective case (K = RI', C the canonical basis). The mul-
tipliers defining the unconstrained steepest descent direction can be obtained from the dual
problem

m
min{ 313N VE@I° | A€ A}, (11)
j=1
see [16]. Its solution A € Am determines the direction

dgp(x) = = NV (@),
j=1

where the multipliers X; are positive only for those indices j such that ij(m)TdSD(a:) =
D(:c7 dsp (w)) Define the trial vector

Vtrial (T) = Pﬂ(x +dsp (m)) - Z.

If every index j with A; > 0 corresponds to an element of the active set A(:c,vtrial(x)), then
A € conv A(m,vtrial(x)) and, by Theorem 8,

v($) = vtrial(x)‘

In particular, if © + dgp(z) € Q, then vyia(x) = dsp(x) and this condition trivially holds,
implying that v(z) = dsp(x). Thus, when the active-set condition is satisfied, one can recover
v(z) from a single projection together with a check of the active constraints. For small values
of m, this verification is inexpensive: the steepest descent direction is cheap to compute, since
it is obtained from a small dual problem (11), which even admits a closed-form solution in the
biobjective case, and the set A(x,vira1(x)) is obtained from a single matriz-vector product.
Hence, this shortcut can be applied in practice with negligible additional computational cost.
The same reasoning applies whenever the ordering cone K is finitely generated. Its positive
polar K* is then also finitely generated, and taking C equal to its set of extreme rays leads
to an active-set test and a shortcut for computing v(x) that are directly analogous to those
described above.

Define the set-valued mapping W: Q2 = K* by
W(x) = {w € conv A(z,v(x)) ’ v(z) = Po(x — JF(x)Tw) - x} (12)

Given x € , the set W(z) is exactly the collection of all dual variable vectors asso-
ciated to v(z). Clearly, W(x) is nonempty and compact. We now prove its outer
semicontinuity.

Theorem 9 The set-valued mapping W: Q = K* given by (12) is outer semicontinuous on
Q.



Proof Let z* € Q be arbitrary and take any w* € limsup,_,,« W(z). By (6), there are
sequences z¥ € Q with zF — z* and w* € W (z*) with w* — w*. By the definition of W (-)
n (12), for each k, we have w* € conv A(z¥, v(z¥)) and

v(mk) = Py (a:k — JF(a:k)ka) s (13)

By the continuity of JF(:), v(-) (see Theorem 6), and the projection operator Pq(-), taking
the limit as k — oo in (13) gives

v(z") = Po(z" — JF(m*)Tw*) —z".
To finish the proof, we must show that w* € convA(z* v(z*)). Recalling that w® e

conv A(z* v(z")), by Lemma 1 (c), cach w* admits a representation with at most m + 1

terms:
m—+1

wh = Z /\fz;c with AF € A,,41 and zf € A", v(a®) c C.
j=1

Hence, for every j and k, we obtain
(ef, TF (" )o(a®)) = D", v(ah)), (14)
Because C' and A, +1 are compact, we may assume (taking a subsequence if necessary) that
zf — zj € C and A? — Aj with A} > 0 and Z;":il Aj = 1. Taking the limit as & — oo in
(14) and using the continuity of JF(-), v(-) and D(,-), we have
(27, JF(2")v(z")) = D(a", v(z")),
hence 2} € A(z*,v(z")) for each j € {1,...,m + 1}. Therefore,
m—+1
w' = Z Az € conv A(z", v(z")),
7j=1
which shows w* € W(z*) and proves limsup,_,,- W(z) C W(z*). Thus, W is outer
semicontinuous on §2. O

This result has a natural algorithmic interpretation. If a projected gradient method
generates a primal-dual sequence {(x*,w*)} with w* € W (z*) and a subsequence
{x*} converges to some z* € (2, then every limit point of {w"**} necessarily belongs
to W(z*). In other words, the dual variables remain consistent in the limit, so that
accumulation points of the dual sequence are valid multipliers associated with the
corresponding primal limit point.

5 Final remarks

This note establishes three contributions to the theory of projected gradient meth-
ods in vector optimization. First, we proved the continuity of the projected gradient
direction through a direct and elementary argument. Second, we obtained a necessary
and sufficient dual characterization, extending known results from the multiobjective
case to arbitrary cones. Finally, we proved the outer semicontinuity of the multiplier
mapping, showing that for any convergent subsequence of projected gradient iterates,
the associated dual sequence has limit points that are valid multipliers for the primal
limit.



Beyond their intrinsic theoretical interest, these properties have direct algorithmic
implications. The continuity of v(-) helps prevent instabilities that may arise from
numerical perturbations or errors in the computation of the projected gradient direc-
tion, which is especially relevant in inexact variants where the direction is computed
only approximately. In particular, continuity guarantees that small perturbations in
the approximate direction do not compromise the descent condition. Moreover, it is
also relevant for the analysis of line search procedures in projected gradient schemes,
including nonmonotone variants: small variations in the accepted step size lead to
nearby iterates, and continuity ensures that the corresponding projected gradient
directions remain close as well. Likewise, the outer semicontinuity of the set-valued
mapping W (-), which associates dual variable vectors to the projected gradient direc-
tion at each primal iterate, plays an important theoretical role in the convergence
analysis of projected gradient-type methods and ensures stability in the behavior of
dual sequences. Consequently, accumulation points of the dual variables remain valid
multipliers corresponding to the primal limit, preventing erratic dual behavior and
supporting convergence guarantees for algorithms that update both primal and dual
variables simultaneously. Altogether, these results reinforce the theoretical founda-
tions of projected gradient algorithms and support the development of more advanced
schemes in vector optimization.
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