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Abstract

We present a proximal gradient method for solving convex multiobjective opti-
mization problems, where each objective function is the sum of two convex
functions, one of which is assumed to be continuously differentiable. The algo-
rithm incorporates a backtracking line search procedure that requires solving
only one proximal subproblem per iteration, and is exclusively applied to the
differentiable part of the objective functions. Under mild assumptions, we show
that the sequence generated by the method converges to a weakly Pareto optimal
point of the problem. Additionally, we establish an iteration complexity bound by
proving that the method finds an e-approximate weakly Pareto point in at most
O(1/¢) iterations. Numerical experiments illustrating the practical behavior of
the method are presented.

Keywords: Convex programming, Full convergence, Proximal Gradient method,
Multiobjective optimization.



1 Introduction

Multiobjective optimization involves simultaneously minimizing two or more objec-
tive functions. Consider the vector-valued function F : R” — (R U {+oco})™
defined by F(z) := (Fi(x),..., Fn(z)). The associated unconstrained multiobjective
optimization problem is denoted as

zlreli&% F(x). (1)

This paper focuses on problem (1), assuming that each component F; : R" — R U
{+0o0} has the following special separable structure:

Fj(z):=G;(z)+ Hj(z), j=1,...,m, (2)

where G; : R" — R is continuously differentiable and convex, and H; : R® — RU
{+0o0} is proper, convex, and continuous on its domain, but possibly nonsmooth. This
particular problem has many important applications. In particular, when H; is an
indicator function of a convex set C, (1) reduces to the convex-constrained problem of
minimizing G(z) := (G1(x),...,Gn(x)) subject to « € C. Furthermore, the separable
structure (2) can be used to model robust multiobjective optimization problems. These
problems involve dealing with uncertainty in the data, and the optimal solution must
account for the worst possible scenario. We refer the reader to [60] for more details
about applications.

Related works. Proximal gradient methods for solving problem (1) with a separable
structure as in (2) have been extensively studied in the scalar setting (i.e., m = 1);
see, for example, [6] and references therein. However, their extension to the multi-
objective/vector setting has only recently attracted attention. Specifically, in [18], a
forward-backward algorithm based on an a priori linear scalarization approach was
proposed and analyzed for convex vector optimization problems in infinite-dimensional
spaces. Subsequently, [60] introduced a multiobjective proximal gradient method with
an Armijo-type line search and analyzed its convergence without assuming convexity of
the objective functions. They demonstrated that every accumulation point of the gen-
erated sequence is a weak Pareto critical point. It is worth mentioning that, when the
objective function in (1)-(2) contains only a differentiable component (i.e., H; = 0 for
all j =1,...,m), this algorithm recovers the multiobjective steepest descent method
of [32]. A variant of the proximal gradient algorithm in [60] was proposed and ana-
lyzed in [10] for solving convex vector optimization problems. The authors established
asymptotic convergence and provided an iteration-complexity bounds for obtaining
an approximate stationary solution in the convex case. A key distinction between
these algorithms is their line search strategy: the algorithm proposed in [60] employs
an Armijo-type line search for the objective function F', while the latter uses a line
search based solely on the differentiable component G, extending Beck and Teboulle’s
backtracking line search [6] to the vector-valued setting. However, the latter algorithm
shares the potential drawback of requiring to solve multiple proximal subproblem per
iteration, as a proximal step must be computed whenever the line search procedure



fails. In [63], the authors provided a convergence rate analysis for the algorithm in
[60], establishing sublinear rates in the convex setting and linear rates in the strongly
convex case. A multiobjective Barzilai-Borwein-type proximal gradient method was
developed in [23], where sublinear and linear convergence rates were established in the
nonconvex, convex, and strongly convex settings.

Recently, accelerated first-order methods have been proposed for solving composite
multiobjective optimization problems, such as those defined by (1)-(2). These meth-
ods enhance the O(1/k) convergence rate of non-accelerated approaches, achieving a
unified global convergence rate of O(1/k?). Specifically, [62] introduced an accelerated
proximal gradient method, establishing global convergence in terms of a merit func-
tion that, in the scalar case, precisely recovers the optimal value gap F(z*) —inf F(z).
Subsequently, [65] demonstrated that this method can achieve an improved asymptotic
convergence rate of o(1/k?). Other multiobjective accelerated first-order algorithms
have been studied in [50, 61]. To address the limitation of the accelerated proximal
gradient method in [62], namely that its full convergence remains unproven, [61] pro-
posed a modified version incorporating additional hyperparameters, which ensures
convergence under mild assumptions. Furthermore, [50] introduced a multiobjective
variant of FISTA that enforces monotonicity in the objective function values while
retaining the global convergence rate. Most recently, [66] proposed a multiobjective
proximal gradient method and an accelerated variant for solving convex problems as
(1)-(2). Both schemes employ an implicit line search rule, avoiding the global Lipschitz
assumption on VG, and achieve sublinear convergence rates. For the unaccelerated
version, the authors proved a linear convergence rate under a strong convexity assump-
tion on the smooth components G;. In addition to these first-order methods, other
approaches that utilize either first or second order information about the objective
function have been explored for composite multiobjective optimization problems like
(1)-(2). These include the generalized conditional gradient method proposed in [5] and
subsequently refined by an adaptive variant in [37]. Each iteration of these algorithms
solves a linear minimization oracle to generate a search direction, a design that can be
particularly advantageous for large scale instances. Armijo-type backtracking strate-
gies are applied to the full objective function. Under the assumptions of convexity,
Lipschitz continuity of VG, and compactness of dom(H ), both variants attain O(1/k)
sublinear convergence rate. Second-order approaches include Newton-type proximal
methods [3, 22], and quasi-Newton proximal schemes [44, 51, 52]. Finally, extensions
of the multiobjective proximal gradient method of [60] that employ Bregman distances
instead of Euclidean norms were studied in [1, 20].

Main contributions. In the present paper, inspired by the work [8], we go a step fur-
ther than [10] and introduce a proximal gradient method with an explicit line search
procedure that is characterized by the following features: (i) only one proximal sub-
problem is solved per iteration; (ii) the backtracking scheme is exclusively applied to
the differentiable component function G. By applying the line search solely to Gj,
we effectively leverage first-order information and avoid performing multiple evalua-
tions of potentially costly functions Hj, thereby reducing the per-iteration cost. The
line search procedure is essential whenever the global L;-Lipschitz continuity of the
gradients of G; fails, or even when computing an acceptable upper bound for L; is



challenging. Moreover, even when the Lipschitz constant is known, the line search
may allow longer steps toward the solution by using the information at every itera-
tion. To illustrate the practicality and efficiency of the proposed method, in Section 6,
we compare it with some multiobjective proximal gradient methods. In this section,
we also discuss that when the structure (2) is used to model robust multiobjective
optimization problems, the evaluation of H; often involves solving an auxiliary opti-
mization problem, making our proposal particularly well-suited and efficient in such
scenarios. Regarding the convergence analysis of the method, we establish, under mild
assumptions, the full convergence of the generated sequence to a weakly Pareto opti-
mal solution of the problem. Additionally, we derive iteration-complexity bounds and
show that the method finds an e-approzimate weakly Pareto point in at most O(1/¢)
iterations.

Brief review of classical multiobjective optimization methods. A widely used
strategy for solving multiobjective optimization problems has been to extend methods
developed for scalar-valued optimization to vector-valued optimization. This approach
was introduced in the work of Fliege and Svaiter [32], where a multiobjective steep-
est descent method was proposed and analyzed. The algorithm was later extended
to general vector optimization problems in [41] and adapted for constrained vector
optimization problems in [40]. Further studies refined the convergence analysis of this
algorithm under quasi-convexity assumptions on the objective function and examined
inexact versions of the method [9, 35, 36]. The iteration complexity of the multiob-
jective steepest descent method was analyzed in [34]. An interior Bregman gradient
method was proposed and analyzed in [21] for solving vector optimization prob-
lems. The proximal point method for solving vector optimization problems in Hilbert
spaces was introduced and analyzed in [17] and further developed in [19, 24, 26]. The
convergence of a scalarized version of the multiobjective proximal point method for
minimizing quasi-convex and pseudo-convex functions was studied in [13]. The Newton
method was extended in [33] to solve multiobjective optimization problems and further
generalized for the vector optimization setting in [42]. A unified analysis of the multiob-
jective Newton method was presented in [64], while a globally convergent Newton-type
method was proposed in [39]. Additionally, several variants of quasi-Newton methods
have been explored, including those discussed in [53, 55, 56]. Subsequently, [7] inves-
tigated the convergence of a subgradient method for vector optimization problems. It
was established that every accumulation point of the generated sequence is a weakly
efficient optimal point. However, the question of whether the proposed scheme achieves
full convergence was not answered. A multiobjective subgradient method based on a
variable scalarization approach was introduced in [27] to address quasiconvex nons-
mooth multiobjective optimization problems. The authors showed that the sequence
generated by this method converges to a Pareto optimal point. In this approach, the
search direction is determined dynamically, similar to the one in [40], without relying
on fixed linear scalarization. Extensions of the gradient, subgradient, and proximal
point methods have been studied in the context of multiobjective and vector opti-
mization problems on Riemannian manifolds; see, for example, [11, 12, 14]. In this
framework, the full convergence of the sequences generated by these methods depends



significantly on the sectional curvature of the manifold. Specifically, for convex prob-
lems, the gradient and subgradient methods require non-negative sectional curvature
for convergence, whereas the proximal point method relies on non-positive sectional
curvature (i.e., Hadamard manifolds). The classical conjugate gradient method was
first analyzed in the context of vector optimization in [48] and further developed in
[38]. In [4], the conditional gradient method was introduced for multiobjective opti-
mization and asymptotic convergence and iteration-complexity bounds for computing
approximate (stationary) solutions were established. An interior point method was
analyzed in [31] in the multiobjective optimization setting.

Organization of the paper. Section 2 presents some definitions and basic results
used throughout the paper. In Section 3, we introduce our proximal gradient algorithm
with the new explicit line search procedure and show that it is well-defined. The
asymptotic convergence analysis is presented in Section 4, and iteration-complexity
bounds are established in Section 5. Numerical experiments are presented in Section 6.
Finally, Section 7 contains a conclusion.

2 Preliminaries

We write p == ¢ to indicate that p is defined to be equal to ¢. We denote by N the
set of nonnegative integers {0,1,2,...}, by R the set of real numbers, and by R,
the set of nonnegative real numbers. As usual, R™ and R™*" stand for the set of m
dimensional real column vectors and the set of m x n real matrices, respectively. We
define R := R U {+oo} and R" := (R U {+00})™. For u,v € R™, v = u (or u < v)
means that v; > u; for j =1,...,m, and v > u (or u < v) means that v; > u; for
j =1,...,m. The transpose of the vector u € R™ is denoted by u". The Euclidean
norm is denoted by || - ||.

Next we present some definitions and properties for scalar functions. The effective
domain of ¢ : R — R is defined as dom(¢) := {x € R" | ¢(x) < +o00}. The function ¢
is said to be proper if dom(¢) is nonempty, and ¢ is convez if, for every z,y € dom(¢)
and ¢ € [0, 1], there holds

otz + (1 —t)y) < to(x) + (1 —1)o(y).
The subdifferential of a proper convex function ¢ at x € dom(¢) is defined by
0d(z) == {u € R™ | p(y) > ¢(x) +u' (y — z), for ally € R"}. (3)

If ¢ : R™ — R is convex and differentiable, then the subdifferential is an unitary set,

ie., 0¢(z) = {Ve¢(r)}, and so

o(y) > ¢(x) + Vo(z) (y —x), for allz,y € R, (4)



where V¢ denotes the gradient of ¢. We say that V¢ is Lipschitz continuous with
constant L > 0 if

IVo(y) = Vo(z)|| < Llly — |, forallz,y € R".

In this case, it holds that
T L 2 n
¢(y) < @) + Vo(2) (y —2) + Slly —2l°,  forallz,y € R", (5)

see, for example, [15, Proposition A.24].

Let F: R" — R be a vector-valued function given by F(z) := (Fy(z), ..., Fm(2)).

The effective domain and the image of F are denoted by dom(F) := {x € R" | Fj(z) <
+00,j=1,...,m}and Im(F) := {y € R™ | y = F(z),z € R"}, respectively. Since for
a multiobjective optimization problem, there is typically no single point minimizing
all functions at once, we employ the concept of Pareto optimality to characterize a
solution, as defined below.
Definition 1. A point T € R™ is Pareto optimal for (1) if there does not exist another
x € R" such that F(z) < F(z) and F;(z) < F;(Z) for at least one indexi € {1,...,m}.
Furthermore, T € R™ is said to be a weakly Pareto optimal point for (1) if there does
not exist another x € R™ such that F(z) < F(Z).

We conclude this section by recalling the well-known concept of quasi-Fejér
convergence, see [2, 30].

Definition 2. Let Q be a nonempty subset of R™. A sequence {z*} in R" is said to
be quasi-Fejér convergent to Q) if and only if for every x € Q there exists a summable
sequence {er} C Ry such that, for every k € N, there holds

2"+ = 2]|* < |2 — 2|® + ex.

The main property of a quasi-Fejér convergent sequence is stated in the following
lemma, and its proof can be found in [57].
Lemma 1. If {2} is quasi-Féjer convergent to Q, then the following statements hold:
(i) the sequence {x*} is bounded;
(ii) if a limit point x* of {x*} belongs to ), then {x*} converges to x*.

3 Algorithm description and well-definedness

For clarity and organization, we explicitly state the assumptions regarding problem
(1), which will be considered throughout the article.

General Assumption: The objective function F : R™ — R", given by F(x) =
(Fi(x),...,Fn(z)), has the following special separable structure:

Fj(x) = Gj($)+Hj(l'), j:].,...,m,

where:



(i) G, :R" — R is continuously differentiable and convez, for j =1,...,m;
(ii) H; :R™ — R is proper, convez, and continuous on dom(H;), for j =1,...,m;
(iii) dom(F) is nonempty and closed.

We now introduce a proximal regularization that will be employed in our method.
Given z € dom(F) and « > 0, let us define the function ¥, : R™ — R as follows:

Wy (u) := max (VGi(x) " (u— )+ Hj(u) — Hj(z)), forallueR™  (6)

Now, consider the scalar-valued optimization problem:

1 9
i D - . 7
nin Yy (u) + 5 lu — ]| (7)
Due to the convexity of H; for j = 1,...,m, it follows that 1, is convex and the

objective function of (7) is strongly convex. Hence, (7) has a unique solution, which
trivially belongs to dom(F') (noting that dom(F') = dom(v,)). We denote the solution
of (7) by po(x) and its optimal value by 6, (), i.e.,

: 1 2
Pa(2) = arg min Yo (u) + o lu — | (8)
and 1
Oa() = Vo (Pa(®)) + 5~ lIPal@) — 2] 9)
It is worth noting that when m = 1, p,(z) is directly related to the well-known

forward-backward operator evaluated at x.

In the following, we state some properties concerning the functions p,(-) and 6,(-),
defined in (8) and (9), respectively.
Lemma 2. Given a > 0, consider p, : dom(F) — dom(F') and 6, : dom(F) — R as
in (8) and (9), respectively. Then, the following statements are true.
(1) 0a(z) <0 for all x € dom(F).
(ii) The following statements are equivalent: (a) x is a weakly Pareto optimal point of
(1); (8) falz) = 0; (¢) pa() = .

(iii) pa(-) and 0,(-) are continuous.

Proof. See [60, Lemma 3.2]. O

3.1 Algorithm

We now formally describe our proximal gradient method for solving (1).

MPG-Explicit: Multiobjective Proximal Gradient algorithm with Explicit
Line search

Step 0. Let 2° € dom(F), a > 0, v € (0,2/a), and 0 < 73 < T2 < 1 be given.
Initialize k < 0.



Step 1. Subproblem
Compute p* := p,(2¥) and 0, (z*) as in (8) and (9), respectively.
Step 2. Stopping criterion

If 0, (x*) = 0, then STOP.

Step 3. Line search procedure

Define d* := p* — 2%, take Jr € argmax;_

Step 3.1. If

m VGj(x’“)Tdk, and set typa = 1.

yeeey

Y
Gj;: (-Tk + ttrialdk) S G]; (-rk) + ttriaIVGj,: (xk)—rdk + ttrial§ ||dk||25

then go to Step 3.2. Otherwise, compute thew € [T1ttrial, Tottrial], S€t tirial ¢ tnew and
repeat Step 3.1.
Step 3.2. If

F(mk + ttrialdk) = F(xk)a

then define t; = ty,421 and go to Step 4.
Step 3.3. Compute thew € [T1ttrial, Toltrial] and set ipial < thew- If

Gj (xk + ttrialdk) < Gj (xk) + ttringGj(J?k)Tdk + ttrial%”dkHQ, j=1,...,m,

then define ¢t = 1,421 and go to Step 4. Otherwise, repeat Step 3.3.

Step 4. Iterate
Define zFt1 := 2% + t;.d*, set k < k + 1 and go to Step 1.

Some comments are in order. (a) If H; lacks smoothness, the subproblem (7) in
Step 1 may also lack smoothness. In such instances, the approach for solving (7)
depends on the specific structure of the functions H;. In Section 6, we will explore
an application to robust multiobjective optimization and discuss how to solve the
subproblem in this particular scenario. (b) At Step 2, it follows from Lemma 2 (ii) that
the MPG-Explicit algorithm stops at iteration k if and only if 2* is a weakly Pareto
optimal point. (c¢) In the line search procedure, the backtracking scheme is applied only
to the differentiable functions G, preventing the computation of potentially costly
Hj functions. In Step 3.1, we first perform a line search using a single function Gj:.
If the resulting ti,ia1 stepsize leads to a decrease in all F}’s, it is accepted and the line
search is finished. Otherwise, the line search is carried out on all G;’s functions until
the condition in Step 3.3 is satisfied. Thus, the k-th iteration concludes with one of
the following scenarios:

Gj; (IkJrl) S GJZ (Ik) + thsz (Ik)Tdk + tk%HdkHz and [F(:I?k+1) j F(I’k)] , (10)
or

G (") < Gi(a*) + 6, VG, (aF) Tdk + tk%Hdk||27 j=1,...,m. (11)

It is worth mentioning that, given j € {1,...,m}, d* is not necessarily a descent

direction for G; at z* meaning that it can happen that VGj(xk)Tdk > 0. However, as



we will see, both cases (10) and (11) result in a decrease in the value of each objective
F;.

3.2 Well-definedness analysis

In the following, we show that the MPG-Explicit algorithm is well defined. This means
that if the algorithm does not stop at z*, then it is possible to obtain 2**! in a finite
time.

Theorem 3. The MPG-Explicit algorithm is well defined and stops at iteration k if
and only if z* is a weakly Pareto optimal point.

Proof. Due to the strong convexity of the objective function in (7), the subprob-
lem at Step 1 is solvable, allowing the computation of p* and 6, (z*). According to
Lemma 2 (ii), the MPG-Explicit algorithm stops at Step 2 in iteration k if and only
if ¥ is a weakly Pareto optimal point. Now, assuming that z* is not a weakly Pareto
optimal point, it follows from Lemma 2 (ii) that d* # 0. Thus, for any arbitrary index
j €{1,...,m}, the differentiability of G; ensures the existence of § > 0 such that

Gj(z* +td*) - G
t

() gl
L (o N e
for all ¢ € (0, d]. Hence,
G (z" + td*) < G4 (2*) + tVG;(a*) Td* +t%||dk\|2, j=1,...,m,

for all t € (0,0]. Therefore, the line search procedure ultimately finishes in a finite
number of (inner) steps, and z**! is properly defined at Step 4. O

4 Asymptotic convergence analysis

The MPG-Explicit algorithm successfully stops if a weakly Pareto optimal point is
found. Then, in order to analyze its convergence properties, we assume henceforth
that the MPG-Explicit algorithm generates an infinite sequence, which is equivalent
to saying that no z* is a weakly Pareto optimal point of problem (1).

In the following, we establish some key inequalities for our analysis. In particular,
we show that if, at iteration k, the backtracking in the line search procedure is based
on G, it automatically leads to a decrease in the corresponding objective Fj.
Lemma 4. Let {x*} be generated by the MPG-Explicit algorithm. Suppose that at
iteration k, the index j € {1,...,m} is such that

Gi(@**1) < Gy(a) + 0V G () Tdb + g d¥) 2 (12)

Then 1
(1) o () > - (B = () = Sl



(ii) for every x € dom(F), we have

||a:k+1 —z|? < ka —z|)* + 2« (Fj(zk) — Fj(xkﬂ)) + 2t max (Fz(x) — Fi(xk))

i=1,...,m
I v k(2 211 7k 12
—2atp | — — =) ||d t2]|d®|“;
aka2)n+u|,

(13)

(iif) Fj(z"*1) — Fy(a*) < —t, (2 5 7@) la* .
!
Proof. (i) It follows from (12) that

1 Y
VG, (@) d" > " (G (") = G;(a")) - §Hdk||2~

Hence, in view of the definition of 1+ in (6), we have

bar () > VG, (a*) Td" + H;(p*) — H;(a*)
> (G = Gy + b (") = Hy(a)] = F P,

Since z*+1 = 2% + t;,(p* — 2%) with ¢, € (0,1], by the convexity of H;, we have
tr (Hj(p") — Hy(2")) > Hy(«") — Hy(2").

By combining the latter two inequalities and using that F; = G; + H;, we obtain the
desired result.
(ii) Let x € dom(F). In view of the definition of z**1 in Step 4, we have
”1,1@-&-1 _ 1’”2 — H"Tk o 1,”2 + ||(Ek+1 _ xk”2 + 2(xk+1 _ (Ek)—r(l'k o :L,)
= [la® — 2||* + 6 [|a*||* + 2t4 (a") T (2 — 2). (14)
Our goal now is to appropriately estimate the quantity 2t5(d*)T (¥ — z). The first-

order optimality condition of (8) implies that —(d*/a) € 9y« (p*). Hence, by the
subgradient inequality (3) and using item (i), we have

Y () 2 (1) + = (@) (0 )

_ k lkT kE le
= 0 (") + (@) (2 = 2) + ||
1

2 o (B = Fy(ah) + é(dk)T(Ik —2)+ <i - ;) 5|2, (15)

Now, in view of the definition of ¢, in (6), the gradient inequality (4) with ¢ = G;, and
the fact that F; = G; + H;, i =1,...,m, we have _max (Fl(a?) - Fz(wk)) > Pk (),

10



which combined with (15) imply that

2t (d*) T (2F — 2) < 20 (Fj(2F) — Fj(a™)) + 2aty, _max (Fi(z) — F;(2"))

i=1,..., m

v N
2, (1- 51 a2

This inequality together with (14) yields (13).
(iii) By setting z = ¥ in (13) and taking into account that ||z**1 —zk||2 = 2| d*||2,
some algebraic manipulations give the desired inequality.

Remark 1. Given that, at iteration k, the line search procedure terminates with a
stepsize ti, satisfying either (10) or (11), the inequality (12) holds for j = ji €
argmax;_; ., VG; (x®)Td*. Consequently, Lemma / is always applicable to the index
ji-

In the following lemma, we show that the objective function sequence {F};(z*)} is
nonincreasing for each j =1,...,m.
Lemma 5. Let {z*} be generated by the MPG-Explicit algorithm. Then, for j =
1,...,m, it holds that {F;(xz*)} is a non-increasing sequence, i.e.,

,,,,,

F(z**1) < F(2*), forall k € N.

Proof. Let k € N. We consider two cases: (i) (10) holds at iteration k; (ii) (11) holds
at iteration k. In the first case, then statement of the lemma is a straightforward
consequence of the second condition in (10). Consider now the second case. Taking
into account that v < 2/« it follows from Lemma 4(iii) that F;(z*T!) < Fj(2*) for
j=1,...,m, concluding the proof. O

To establish the convergence of the MPG-Explicit algorithm, we introduce the
following additional assumption, meaning that the set Im(F) is complete with respect
to the Paretian cone R := {z € R™ | z = 0}.

Assumption (A1): All monotonically nonincreasing sequences in the set Im(F) are
bounded below by a point in Im(F), i.e., for every sequence {y*} C dom(F) such that
F(y**tY) < F(y*) for all k € N, there exists y € dom(F) such that F(y) < F(y*) for
all k € N.

Assumption (Al) is widely used in the related literature (e.g., [9, 10, 13, 17—
19, 24, 25, 36, 40, 41]). It is commonly employed to ensure the existence of efficient
solutions for vector-valued optimization problems, see [47, Section 2.3]. In the scalar-
valued unconstrained case, it is equivalent to ensuring the existence of an optimal
point.

Theorem 6. Let {z*} be generated by the MPG-Euzplicit algorithm and suppose that
Assumption (A1) holds. Then, {x*} converges to a weakly Pareto optimal point T of
problem (1).

11



Proof. First, we define
Q= {z € dom(F) | F(z) = F(z"), for allk € N}.

In view of Lemma 5, it follows from Assumption (A1) that  is nonempty. Thus, let
us consider an arbitrary & € €, i.e., F(2) < F(z*) for all £ € N. Therefore, taking into
account Remark 1 and that v < 2/«, applying Lemma 4(ii) with j = j; and = = &
yields
2"t — )2 < ||la* — &)|® + e, forallk € N. (16)
where
e = 2a (Fjy (z*) — Fje (x ) + || d¥|?,  for allk € N. (17)
Note that Lemma 5 implies that e, > 0 for every k& € N. Moreover, since ti < iy, we
obtain from Lemma 4(iii) with j = j; that

1 1
2 (a - g) 1d¥? < t (a - g) I1d*|2 < Fj; (a*) — Fj; (zF*1),  for allk €N,

which yields

2
— a (Fj;; (%) = Fy: (2FF1)),  for allk € N,

telld*|* <
Hence, by (17) and Lemma 5, we have

ex < c(Fjr (z*) — Fj» (zFt1)) < CZ (Fj(z*) — Fy(a*)), for allk € N,

where ¢ := 2a + 2a/(2 — a7y) > 0. By summing this expression over all indices less
than or equal to N € N, and taking into account that & € €2, we obtain

Z% 2> (B ) = e 3 (Fj(a) — Fi(a"*)

= §=1k=0 j=1

Z Fj(2)) < +o0.

—

Therefore, 720 &), < +oo. Hence, it follows from (16) that {x*} is quasi-Fejér con-
vergent to €, see Definition 2. From Lemma 1(i), it follows that {z*} is bounded. Let
7 be a limit point of {z*}. Since dom(F) is closed, F is continuous on dom(F'), and
F(z*t1) < F(z%) for all k € N, we have # € Q. Thus, Lemma 1(ii) implies that the
whole sequence {z*} converges to 7.

Let us now show that Z is a weakly Pareto optimal point of problem (1). Since

ti||d¥|| = ||z**! — 2%|| and {2} converges to Z, we obtain
lim tg||d*|| = 0. (18)
k——+oo
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We now claim that there exists a subsequence {d*¢} such that lim,, . ||d*¢| = 0.
Indeed, if limsupy,_, , .o tx > 0, then the claim clearly holds from (18). Hence, assume
that limsupy_,, . tx = 0, which in turn implies that limg_, ;o tx = 0. Without loss
of generality, suppose that ¢, < 1 for all k£ € N. Therefore, by Step 3 of the algorithm
and taking into account Lemma 4(iii), for each k& € N there exist at least one index
ir € {1,...,m} and

_ t
0<fp< = (19)
1
such that y
Gi, (2% + 1d") > Gy, (2F) + 1, VG, () Td" + Ek§||d’“||2.
Since {1,...,m} is finite, there exist i, € {1,...,m} and an infinite set of indices

{ke} C N such that
Gi (¥ + T, d¥) — Gy (") > Ty, VG, (") Td¥* + Em%Hdk’f 2, for alll € N.
On the other hand, since G;, is convex, it follows from (4) that
G, (x% 4 1y,,d") — G, (2™) < £, VG, (" + Ty, d*)Tdr  for alll € N.
By combining these two inequalities, we obtain
%Hd’“ 12 < (VGy, (2™ + By, d™) — VG, (7)) " d¥e,  for all £ € N.
Therefore, by the Cauchy-Schwarz inequality, we have

2 _
|dFe|| < S VG, (2% + t,d™) — VG, (2)||, for all¢ € N.

Note that (18) and (19) imply that limg, 1o fk[dkf = 0. Thus, since G;, is continu-
ously differentiable, by taking limits as £ — 400 in the latter inequality, we conclude
that limy_, o |[|[@*|| = 0, as claimed. Hence, it follows from the definition of d* and
Lemma 2(iii) that

- ok =

0= lim 4] = lim_[pa(a™) Ipa (@) — 2l

{— 400

Therefore, p,(Z) = Z, and then, in view of Lemma 2(ii), we conclude that Z is a weakly
Pareto optimal point of problem (1). O

5 Iteration-complexity for MPG-Explicit Algorithm

In this section, we establish some iteration-complexity bounds for the MPG-Explicit
algorithm to obtain an approximate weakly Pareto optimal point of (1).

We start by presenting a basic result that will be used to establish the iteration-
complexity bounds for the MPG-Explicit algorithm.

13



Lemma 7. Assume that (A1) holds and let T be the limit point of the sequence {z*}
generated by the MPG-FEzplicit algorithm. Then, for every N € N, we have

N m
k+1 _ k)12 < =
> 1eh ot o> (Fle) = Fi(@)). (20)

(=1

N
20 (Z ) EN. < dy, (21)
k=0

where

m

. _ - _ 20(3 — ya _
Py = i (BE)-F@), = [+-alP+ 222D Y (ie0) - File)).
=1

Proof. Let & be the limit point of {z*}. Since F(z*) — F(zk*1) = 0 for all k € N,
we immediately Fj(z*) — F;(2FT1) < 300 (Fo(2®) — Fy(aFt1)), for all j € {1,...,m}
and k € N. Hence, Lemma 4(iii) and the facts that 2—~a > 0 and 2 < t;, imply that

m

- > (Fu(a®) = Fo(ah). (22)

{=1

2
2| < ——

Adding both sides of the above inequality from k = 0,..., N, we obtain

m N
zwm2;“zzww— ) = SN () - B,

«
v {=1 k=0

—

Thus, (20) follows from the above inequality and the facts that x**1 — ¥ = ¢;.d* and
F(z) < F(zN+!). Now, Lemma 4 (ii) with # = z and the fact that ¢;(2 — ya) > 0,
imply that

[zF+t — 2 <|ja* — 2| + Qaz (Fo(a®) — Fy(zFt) (23)
=1
+ 20ty _max (FZ(E) — E(xk)) + tinkHQv

which in view of (22) and the fact that F*. = —max;j_1 ., (F;(Z) — F;(z*)), yields
2ate iy < o~ — o4 = ol + 2221 Y7 (5 (o) - R+
=1
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Adding both sides of the above inequality from k£ = 0,..., N, and noting that F'(z) <
F(zN) < F(2*) (in particular, FN, < Fk. Y we obtain

- 20(3 — ya) —

N 0 ~2 N+1 =2 - 0 N+1

20 <kz_0tk> me§||$ _xll —||CL‘ * _J;H +W;(F€(x )—Fz(l‘ + ))

<l — ol + 221N () - Foa) =

proving that (21) holds. O

Recall that x*+! = 2F + #;,(p¥ — 2¥), and hence, in view of Lemma 2(ii), the
stopping criterion in Step 2 of the MPG-Explicit algorithm is equivalent to z*+1 = z¥.
In our numerical section, in order to compare the MPG-Explicit algorithm with other
algorithms, we use the stopping criterion ||z**1 —z¥|| < ¢, for a given tolerance ¢ > 0.
In the next result, we establish the iteration-complexity bound for the MPG-Explicit
algorithm in order to satisfy this stopping criterion.

Proposition 8. Assume that (A1) holds and let T be the limit point of the sequence
{x*} generated by the MPG-Explicit algorithm. Then, for a given tolerance € > 0,

there holds ||z**! — 2%|| < e in at most O(1/e?) iterations.

Proof. Note that if |25t — 2| > ¢ for every k = 0,..., N, then (20) implies that

N m
2c
k k _
(N 4+ 1) < D0l = ok < 523 (R - Fula)
k=0 {=1
which implies that
1 m
N4+l< Fy(2") — Fu(2)).
20 ) 2 (F@) = Fil@)

Hence, if the MPG-Explicit algorithm executes N iterations, where NN is the first
natural number larger than the right-hand side of the above inequality, we necessarily
have ||2*+1 — 2%|| < e. Therefore, the proof of the proposition follows. O

Note that (21) can be used to establish a convergence rate on the sequence {F* . 1
as long as the sequence of stepsizes {t;} stays away from zero. In order to ensure this
condition, we need to introduce the following additional assumption.

Assumption (A2): The gradient VG is Lipschitz continuous with constant L; > 0,
forj=1,...,m.

The next result shows that, under Assumption (A2), the sequence of stepsize {t;}
remains bounded away from zero.
Lemma 9. Let {z*} be generated by the MPG-Explicit algorithm and suppose that
Assumption (A2) holds. Then, for all k € N, we have tj, > tmin := min{1, 7Y/ Lmax},
where Lipax := max;—1,... m Lj.

15



Proof. Let k € N. If t;, = 1, then the required inequality trivially holds. Thus, assume
that t; < 1. Therefore, by Step 3 of the algorithm, there exist at least one index
ir € {1,...,m} and 0 <ty < ¢;/7 such that

Gi, (2% + 1,d") > Gy, (z%) + 8,V Gy, (%) TdF + Ek%Hd’“HQ.

On the other hand, considering Assumption (A2), it follows from (5) that

— — LII]aX
Gy (2" + trd") < G, (a%) + 6V Gy, (%) Td" + fﬁTHdkHQ-

By combining the two latter inequalities, we easily obtain that ¢ > v/Lmax. Hence,

by the definition of #;, we have
T

)
Lmax

and the proof is concluded. O

t >

The next result presents a sublinear convergence rate on the sequence of minimum
optimal values { F¥, } defined in Lemma 7. As a consequence, an iteration-complexity
bound on this sequence is obtained.

Proposition 10. Assume that (A1) and (A2) hold and let T be the limit point of the
sequence {x*} generated by the MPG-Explicit algorithm. Then for every N € N, we
have 7
N 0
Fomin < 20t pin (N + 1)’
where tyin = min{l,717/Lmax}t and dy is as in (21). As a consequence, given a
tolerance € > 0, we have FY, < ¢ in at most N = O(1/e) iterations.

min
Proof. The proof of the first statement of the proposition follows immediately from

(21) and the fact that Lemma 9 implies that t5 > &4, for all k € N. The proof of the
second statement follows immediately from the first one. O

Recall that the MPG-Explicit algorithm stops if and only if 6, (2*) = 0, which in
view of Lemma 2(ii) is equivalent to say that z* is a weakly Pareto optimal point of
(1). In this sense, given a tolerance € > 0, it seems reasonable to say that a point &
satisfying |0, (Z)| < € is an e—approximate weakly Pareto optimal point of (1). In the
following, we establish an iteration-complexity bound for the MPG-Explicit algorithm
to obtain an e—approximate weakly Pareto optimal point of (1). We start by proving
an auxiliary result which helps to show that |0, (z*)| is summable.

Lemma 11. Let {z*} be generated by the MPG-Explicit algorithm and suppose that
Assumption (A2) holds. Then, there exists ¢ > 0 such that

100 (%) < ¢ (Fj: (a%) — Fj: (a"1)),  for allk €N,

where jj; € argmax;_; __,, VG;(z*)"dF.
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Proof. From the definition of 6, (z*) in (9), Lemma 4(i) with j = j;, and taking into
account that v < 2/«, we obtain

Ha(xk) > l (Fj; (mk+1) — Fj; (Q’Jk)) + <21C¥ - g) ||dk||2

27

1
k+1 k k(2
i (Fjz (21 = By (2¥)) — 2a||d |I¥,  for allk € N.

Therefore, it follows from Lemma 4(iii) with j = j that

1 1
On(z%) > (1 +5— va) " (Fj (2*t1) — Fjr (2¥)),  for allk € N.

Hence, by Lemma 9 and taking into account that Fj (z**1) — Fj: (2¥) < 0, we have

1 1
k k41 k
O (z) > <1+ 2—’ya> = (Fj;(x 1) — Fj: («¥)), forallk e N.

Therefore, we conclude the proof by defining ¢ := [1+1/(2 — ya)]/tmin and by noting
that ¢ > 0 and 6, (z*) < 0. O

We are now able to establish the iteration-complexity bound for the MPG-Explicit
algorithm.
Theorem 12. Suppose that Assumptions (A1) and (A2) hold. Then, for a given
tolerance € > 0, the MPG-Ezplicit algorithm generates a point ¥ such that |0, (z%)| <
e in at most O(1/e) iterations.

Proof. Assume that none of the generated points z¥, k = 0,..., N, is an e-approximate
weakly Pareto optimal point of (1), i.e., |4 (z*)| > e. Thus, from Lemma 11, we obtain

N
(N +1)e < (N + Dmin{|fa(z")| | k=0,...,N} <Y [6a(a")]
k=0

N
ey (Fj(a) = Fy ("))
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where Z is as in Theorem 6. Therefore,

eyt (F(=°) - Fy(2))

g

N+1<

)

concluding the proof. O

We end this section by noting that the computational cost associated with each

iteration k of the MPG-Explicit Algorithm includes solving the subproblem at Step 1
and computing the stepsize t; at Step 3. In terms of the line search procedure, the
computational cost essentially involves evaluations of G; functions at different trial
points. The following remark outlines the maximum number of function evaluations
needed to compute ty.
Remark 2. For iteration k, let w(k) > 0 denote the number of backtracking iterations
in the line search procedure to calculate ty, i.e., the number of thew Stepsizes computed.
Thus, tp, < T;(k). Since, by Lemma 9, tx, > tmin, we obtain log(tmin) < w(k)log(m).
Considering that 7o < 1, it follows that w(k) < log(tmin)/log(ms). Consequently, the
line search procedure involves at most:

* 1+mw(k) <14+ mlog(tmin)/log(me) evaluations of G;’s functions at Steps 3.1 and
® m — 1 evaluations of H;’s functions at Step 3.2.

6 Numerical results

This section provides numerical results to assess the practical performance of the
MPG-Explicit algorithm. We are mainly interested in verifying the effectiveness of
using the new explicit line search procedure in a proximal-gradient-type method. For
this purpose, we consider the following methods in the reported tests:

o MPG-Explicit: The multiobjective proximal gradient algorithm with the explicit
line search procedure proposed in Section 3.1.

® MPG-Armijo: The wanilla proximal gradient algorithm with Armijo line search
proposed in [60]. The stepsize is defined as

b =: r?alglc{2_z | Fj(2® +27%d%) < Fj(a*) — 027 % (%), j = 1,...,m},
€

where ¢ := 10~ is an algorithmic parameter.

® MPG-Accelerated: The accelerated proximal gradient method proposed in [62].
Under assumption (A2), the algorithm starts with 2° = y* € dom(F), a > Ly :=
max;—1,..m Lj, and updates the iterates as follows:

k= arg min max [VGi(yk)T(u — yk) + H;(u) + Gi(yk) — Fl-(xk_l)]—l—%\\u—ykw,

ueR™ 1=1,....m
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where the auxiliary variable y* is updated with a momentum term y**+! := zF 4+
Vi (2% — 2% 71), with yp, := (£ — 1)/tis1 and g1 := /2 + 1/4+1/2. In our imple-
mentation, the parameter « is updated iteratively using an adaptive backtracking
procedure as described in [62, Remark 3].

e MPG-Normal: The so-called normal proximal gradient method described in [62].
This algorithm essentially coincides with the MPG-Accelerated algorithm with y* =
2F=1 for all k > 1.

e MPG-Implicit: The émplicit proximal gradient algorithm proposed in [10]. This algo-
rithm can be viewed as a precursor to the MPG-Explicit algorithm. It is similar
to the MPG-Explicit algorithm, with the line search procedure replaced by the
following scheme: Beginning with « = 1, if

1 :
G (pa(a)) < Gj(a*) + VG;(a*) Td* + %Ildkllz’ J=1...,m,

then z*+1 := p, (z*), and a new iteration is initialized. Otherwise, set o «— «/2 and
solve the proximal subproblem (8) again.

The success stopping criterion for all algorithms is defined as:

2% — ¥l 4
(L, ] =0 2y
For the MPG-Accelerated algorithm, y* is updated using the momentum term as
described in the algorithm’s formulation. In the other algorithms, 3" is taken as 2%~
This stopping criterion is based on the approach used in [62].

The maximum number of allowed iterations is set to 200, after which the algorithm
is considered to have failed. The experiments were conducted in MATLAB version
24.2 (R2024b), on a computer with a 3.7 GHz Intel Core i5 6-Core processor and
8GB 2667TMHz DDR4 RAM, running macOS Sequoia 15.0. All codes are available at
https://github.com/lfprudente/ MPG.

6.1 Implementation details of MPG-Explicit

The algorithmic parameters for the MPG-Explicit implementation are set as follows:
a=1,v=1.9999, 71 = 0.1, and 75 = 0.9. Given that the explicit line search procedure
utilizes only information from the differentiable functions G;, we exploit this char-
acteristic by implementing the backtracking scheme based on quadratic polynomial
interpolations of G;’s functions.

The selection of ¢,y in Step 3 is performed using an adaptive procedure that
considers a reference function Gj, . Specifically:

¢ In Step 3.1, the reference function is G-, where ji € argmax;_; _,, VG, (zF) T dk.
® In Step 3.3, the reference function is Gy, , corresponding to a function for which
the inequality in Step 3.3 is not satisfied. According to Lemma 4 , the inequality in
Step 3.3 is violated for Gj, if Fj, (2% + tyriad®) > Fj, (z%), as indicated in Step 3.2.

To update tnew, we proceed as follows. Let G, be the reference function and define
o(t) = Gy (a% +tdF). If ' (0) = VG, (z¥) Td* < 0, we compute t,, the minimizer of
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the quadratic approximation ¢4(t), given by

w/(o)t%rial
2 [@(ttrial) - 50(0) - SDI(O)ttrial} ’

ty=—

where ,(t) interpolates the values ¢4(0) = ¢(0), ¢ (0) = ©'(0), and @q(terial) =
O(trial)- I tg € [T1terial, Totirial], We S€t thew = tq. Otherwise, we set tnew = tirial/2.
The pseudocode for computing t,ey is given below:

Computation of ¢,y

Input: tea, d*, 2%, 71,7
Choose reference function Gj,
Define p(t) := G, (z* + td")
if ¢'(0) = VG, (2*)Td* <0 then
Compute t4, the minimizer of the quadratic approximation ,(t)
if tq S [TlttrialvTZttrial] then
Set tnew = tg
else
Set tnew = ttria1/2
end if
else
Set thew = ttrial/2
end if
Output: thew

© 2 3P o w e

e e =
Lol A

6.2 Test problems

The chosen test problems are related to robust multiobjective optimization (see [16]).
Robust optimization deals with uncertainty in the data of optimization problems,
requiring the optimal solution to occur in the worst possible scenario, i.e., for the most
adverse values that the uncertain data may take.

In the following, we discuss how the test problems are designed (see [5]). The
differentiable components G; come from convex multiobjective problems found in the
literature. Table 1 provides the main characteristics of the selected problems, including
the problem name, the corresponding reference for its formulation, the number of
variables (n), and the number of objectives (m). For each test problem, we assume
that dom(H;) = {x € R* | b X = < ub} for j =1,...,m, where lb,ub € R™ are given
in the last columns of the table. Thus, dom(F') also coincides with this box.

For a given problem in Table 1, we denote the uncertainty parameter by z € R™,
and assume that the objective functions are as follows:

Fj(z) :=Gj(x) +z"2, xcdom(F), j=1,...,m.
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Problem  Ref. n m b ub
AP1 B 2 3 (=10, —10) (10, 10)
AP2 (3] 1 2 —100 100
AP4 3] 3 3 (—10,-10,-10) (10, 10, 10)
BK1 [43] 2 2 (=5,-5) (10,10)

DGO2 [43] 1 2 -9 9
FDS [33] 5 3 (=2,...,—-2) 2,...,2)
IKK1 [43] 2 3 (—50, —50) (50, 50)
JOS1 [45] 100 2 (-100,...,—100) (100, ...,100)
Lovl [46] 2 2 (—10, —10) (10, 10)
MGH33 [49] 10 10 (-1,...,-1) a,...,1
MHHM2  [43] 2 3 (0,0) (1,1)
MOPT7 [43] 2 3 (—400, —400) (400, 400)
PNR B4 2 2 (=2, -2) (2,2)
SD 59 4 2 (1,v2,v2,1) (3,3,3,3)

SLCDT2 [58] 10 3 (-1,...,-1) 1,...,1)
SP1 [43] 2 2 (=100, —100) (100, 100)
Toi4 [49] 4 2 (-2,-2,-2,-2) (5,5,5,5)
Toi8 [49] 3 3 (-1,-1,-1,-1) (1,1,1,1)
VU2 [43] 2 2 (—3,-3) (3,3)

ZDT1 [67] 30 2 (0,...,0) 1,...,1)
ZLT1 [43] 10 5 (—1000,...,—1000)  (1000,...,1000)

Table 1: List of test problems.

Minimizing F)j(z) under the worst-case scenario involves solving

.
Gj(z) + max sz,

min
zedom(F)

where Z; C R™ is the uncertainty set. Thus, we define H; : dom(F') — R as

Hj(z) := maxz 'z,

=1,...,m.
ZEZJ j b) b)

(25)

Assuming that Z; is a nonempty and bounded polyhedron given by Z; = {z € R™ |

Ajz < b;}, where A; € R¥™ and b; € RY, we can express (25) as
T

max, 'z (26)

s.t. AjZ j bj.

This means that evaluating H;(-) requires solving a linear programming problem.

Let us discuss how the subproblem can be solved. It is easy to see that (8) can be

reformulated by introducing an extra variable 7 € R as follows

min-., 7+ 5= |ju — 2|2
st. VGj(@")T(u—2a2F)+ Hj(uw) — Hj(z*) <7, j=1,...,m, (27)
b <u < ub.
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Now, by noting that the dual problem of (26) is given by

min,, bijj
s.t. Aijj =ux,

we can use the strong duality property to reformulate (27) as the following quadratic
programming problem:

minr 0, T+ 5 ||u— 2|2
st. VG ()T (u— 2F) —|—bijj —H;(z") <7, j=1,...,m,
Alwj=u, j=1,...,m, (28)
wjto, j:l,...,m,
b < u =< ub.

For more details, see [60, Section 5.2 (a)]. In the codes, we use a simplex-dual method
(linprog routine) to solve (26), and an interior point method (quadprog routine) to solve
(28). We mention that if linprog or quadprog fail to solve (26) or (28), respectively,
the execution of the main algorithm is terminated, and the algorithm is considered to
have failed in solving the original problem.

In our experiments, we define the uncertainty set Z; as follows: Let B; € R"*™ be
a (random) nonsingular matrix, and § > 0 be a given parameter. Then

Z;={z€eR"| -de X Bjz=<de}, j=1,...,m,

where e = (1,...,1)7 € R™. The parameter § plays a crucial role in controlling the
uncertainty of the problem and is defined as:

8 := 8|2,

where § is randomly chosen from the interval [0.02,0.10], and & is an arbitrary point
in dom(F).

6.3 Efficiency and robustness

For each test problem, we employed 100 randomly generated starting points within the
corresponding set dom(F'). In this phase, each combination of a problem and a starting
point was treated as an independent instance and solved by the five algorithms. A run
is considered successful if (24) is satisfied, regardless of the objective function value.
The results in Figure 1 are presented using performance profiles [29] and compare the
algorithms with respect to: (a) CPU time; (b) number of iterations; (c¢) number of
evaluations of H;’s functions. It is worth noting that, in a performance profile graph,
the extreme left (at 1 in the domain) assesses efficiency, while the extreme right
evaluates robustness.
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(a) CPU time (b) Iterations (c) Hj’s evaluations

1 1

0.8 0.8

0.6 0.6

—— MPG-Explicit —— MPG-Explicit —— MPG-Explicit

04 —— MPG-Accelerated 04 —— MPG-Accelerated 04 —— MPG-Accelerated
——— MPG-Armijo ——— MPG-Armijo ——— MPG-Armijo

0.2 MPG-Normal 0.2 MPG-Normal 0.2 MPG-Normal
= MPG-Implicit = MPG-Implicit = MPG-Implicit

0 0
10° 10* 10° 10! 102 10° 10! 10°

Fig. 1: Performance profiles considering: (a) CPU time; (b) number of iterations; (c)
number of evaluations of H;’s functions.

As shown in Figure 1 (a), with respect to CPU time, the MPG-Explicit algo-
rithm is the fastest among the tested methods, followed by MPG-Accelerated and then
the remaining algorithms. This aligns with additional results, indicating that MPG-
Explicit, MPG-Accelerated, and MPG-Armijo are competitive in terms of iteration
count, outperforming MPG-Normal and MPG-Implicit, see Figure 1 (b). However, as
shown in Figure 1 (c), MPG-Explicit further distinguishes itself by requiring fewer eval-
uations of H;’s functions, making it the fastest method overall. Concerning robustness,
both MPG-Explicit and MPG-Armijo exhibit high robustness values, with success
rates of 98.9% and 99.1%, respectively, indicating their reliability across the set of
test problems. MPG-Accelerated also shows a strong robustness score of 95.9%, while
MPG-Normal and MPG-Implicit achieve lower robustness, with success rates of 85.3%
and 76.1%, respectively. Table 2 summarizes the efficiency and robustness scores for
each algorithm.

Tin]i?:lmenlcg (%) H, Robustness (%)
MPG-Explicit 36.0 39.2 504 98.9
MPG-Accelerated 26.2 39.2 355 95.9
MPG-Armijo 7.7 438 11.8 99.1
MPG-Normal 11.6 25.7 229 85.3
MPG-Implicit 18.8 23.0 25.2 76.1

Table 2: Efficiency and robustness of the algorithms on
the chosen set of test problems.

Table 3 complements the findings by displaying, for each problem, the percent-
age of successfully solved instances and the average values of each metric (CPU time,
number of iterations, and number of evaluations of Hj’s functions) for each algo-
rithm, with the best results highlighted in bold. In line with the performance profiles,
the table shows that the MPG-Explicit, MPG-Accelerated, and MPG-Armijo algo-
rithms exhibit high robustness, with success rates close to 100%. Failures across all
methods primarily resulted from reaching the maximum iteration limit or errors in
solving the subproblem via the quadprog routine. For iteration count, MPG-Explicit,
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MPG-Accelerated, and MPG-Armijo alternate as the leading methods across differ-
ent problems, reflecting their competitive balance in iteration efficiency. On the other
hand, MPG-Explicit consistently delivers the best outcomes in terms of CPU time
and H; evaluations, highlighting the potential benefits of the new explicit line search
procedure, particularly in cases where evaluating the H; functions is computationally
expensive.

6.4 Pareto frontiers

In multiobjective optimization, the main goal is to estimate the Pareto frontier of
a given problem. A commonly employed strategy for this task involves running an
algorithm from various starting points and collecting the Pareto optimal points found.
Therefore, for a given test problem, we execute each algorithm for 2 minutes to obtain
an approximation of the Pareto frontier. As shown in Table 3, this 2-minute limit
allows for multiple restarts of the algorithms from different initial points, providing
an adequate estimate of the Pareto frontier. Moreover, this methodology favors faster
algorithms, enabling them to explore more starting points within the fixed time, which
typically results in a larger set of Pareto optimal points.

We compare the results using well-known metrics such as Purity, (I and A) Spread,
and Hypervolume. In essence, for a given problem, the Purity metric measures the
algorithm’s ability to discover points on the Pareto frontier, while the Spread metric
assesses its capability to obtain well-distributed points along the Pareto frontier. The
Hypervolume metric, on the other hand, quantifies the volume in the objective space
covered by the Pareto optimal points found by the algorithm, relative to a predefined
reference point. For each problem, we set the reference point as the maximum value
observed for each objective function across all solutions from all algorithms and initial
points. For a detailed discussion of these metrics and their uses along with performance
profiles, see [28, 62].
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Fig. 2: Metric performance profiles: (a) Purity; (b) Spread I'; (c) Spread A; (d)
Hypervolume.

Figure 2 shows that MPG-Explicit remains competitive across all metrics, con-
sistently achieving strong performance. MPG-Accelerated stands out as the most
efficient algorithm overall, while MPG-Implicit consistently ranks as the least efficient.
For the Purity and Spread I' metrics, MPG-Accelerated leads, with MPG-Explicit
closely following as the second-best, highlighting its ability to effectively discover and
distribute points along the Pareto frontier. In the Spread A metric, all algorithms per-
form similarly, except for MPG-Implicit, which ranks significantly lower; surprisingly,
MPG-Normal performs slightly better in this case. For the Hypervolume metric, MPG-
Accelerated holds a slight advantage, with MPG-Explicit maintaining a competitive
position alongside other methods. These results support the conclusion that incorpo-
rating the new line search procedure does not compromise the practical performance
of a proximal-gradient-type method, especially regarding solution quality.

We mention that the observed results align with the theoretical convergence prop-
erties of MPG-Accelerated, which benefits from an accelerated functional convergence
rate of O(1/k?). This rate likely enhances its effectiveness in estimating the Pareto
frontier but does not necessarily translate to faster convergence in runtime. Indeed,
the experiments in Section 6.3 confirm this distinction, as MPG-Explicit emerges as
the fastest algorithm overall.

For illustrative purposes, Figure 3 below displays the image space along with the
approximation of the Pareto frontier obtained by the MPG-Explicit algorithm for the
BK1, Lovl, PNR, and VU2 problems. In the graphics, the final iterate is marked by a
black dot, while the intermediate iterates appear as blue dots linked by line segments
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that trace the path from the initial point to the solution. As can be seen, the algorithm
visually achieves a satisfactory outline of the Pareto frontiers.

7 Conclusion

We presented a proximal gradient method with a new explicit line search procedure
designed for convex multiobjective optimization problems, where each objective func-
tion Fj is of the form F}; := G; + H;, with G; and H; being convex functions and
G; being continuously differentiable. The algorithm requires solving only one prox-
imal subproblem per iteration, with the backtracking scheme exclusively applied to
the differentiable functions G;. Our numerical experiments revealed that the proposed
method exhibits a reduced number of evaluations of H; when compared to other prox-
imal gradient algorithms, including the accelerated proximal gradient method and the
proximal gradient method with Armijo line search proposed in [62] and [60], respec-
tively. This characteristic makes our approach particularly promising in applications
where the computation of H; is computationally expensive. Some directions for future
research include the development of a hybrid strategy that combines our inexpensive
G-based test with occasional full evaluations of the composite function F, as well as
integrating the proposed line search procedure with other optimization methods, such
as Newton-type algorithms.
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