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CONTRIBUTIONS TO THE STUDY

OF MONOTONE VECTOR FIELDS

J. X. DA CRUZ NETO (Teresina)1, O. P. FERREIRA

and L. R. LUCAMBIO P�EREZ (Goiânia)

Abstract. We introduce the concept of a strongly monotone vector �eld on
a Riemannian manifold and give an example. We also demonstrate relationships
between di�erent kinds of monotonicity of vector �elds and di�erent kinds of def-
initeness of its di�erential operator. Some topological and metric consequences of
the strict and strongly monotone vector �elds' existence are shown.

1. Introduction

A large class of non-convex constrained minimization problems can be
seen as convex minimization problems in Riemannian manifolds. The study
of the known optimization methods' extension to solve minimization prob-
lems on Riemannian manifolds is the subject of various works, see [3], [4],
[5], [6], [13], [17] and their references.

A generalization of the convex minimization problem is the variational
inequality problem. Several classes of monotone operators were introduced
in the study of variational inequality problems and convergence properties
of iterative methods to solve them.

The concept of monotonicity and strict monotonicity of the vector �elds,
that are de�ned on Riemannian manifolds are introduced in [10, 11]. We
introduce the concept of a strongly monotone vector �eld, study its relation
with strong convexity of function and give an example.

In Section 3, we establish the relationship between di�erent classes of
vector �elds' monotonicity and their di�erential operators' de�niteness. In
Section 4, we prove that a strongly monotone vector �eld has only one sin-
gularity and that the square of such a vector �eld's norm is a coercive map.

In Section 5, we study some topological and metric consequences of the
existence of strictly monotone vector �elds, showing that if there exists a
strictly monotone vector �eld then there exists no closed geodesic in this
manifold. If, moreover, the manifold is not compact and has non-negative
sectional curvature then its soul has dimension 0 and the manifold is there-
fore di�eomorphic to Rn. It will also be shown that if the manifold has non-
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positive sectional curvature everywhere and there exists a strongly monotone
vector �eld de�ned on it, then the volume of this manifold is in�nite.

2. Basics concepts

In this section some frequently used notations, basic de�nitions and im-
portant properties of Riemannian manifolds are cited. They can be found
in any introductory book on Riemannian geometry, for example [2] and [14].
Throughout this paper, all mentioned manifolds are smooth and connected
and all functions and vector �elds are smooth.

Let a manifold M be given and denote the space of vector �elds over M
by X(M), the tangent space of M at p by TpM and the ring of functions
over M by F(M). Let M be endowed with a Riemannian metric h; i, with
the corresponding norm denoted by k k, so that M is now a Riemannian
manifold. Remember that the metric can be used to de�ne the length of
a piecewise smooth curve c : [a; b]!M joining p to q, p, q 2M , i.e. c(a)

= p and c(b) = q, by l(c) =
R
b

a



c0(t)

 dt. Minimizing this length functional
over the set of all such curves we obtain a distance d(p; q) which induces
the original topology on M . The metric induces a map f 2 F(M) 7! grad f
2 X(M) which associates to each f its gradient by the rule hgrad f;Xi =
df(X), X 2 X(M). The chain rule is generalized to this setting in the usual

way: (f Æ c)0(t) =


grad f

�
c(t)

�
; c0(t)

�
. In particular, if f assumes either a

maximum or a minimum value at a point p 2M then grad f(p) = 0.
Let r be the Levi-Civita connection associated to

�
M; h; i� . If c is a curve

joining points p and q in M , then, for each t 2 [a; b], r induces an isome-
try, relative to h; i, P (c)a

t
: Tc(a)M ! Tc(t)M , the so-called parallel transport

along c from c(a) to c(t). The inverse map of P (c)a
t
is denoted by P (c�1)

a

t
:

Tc(t)M ! Tc(a)M . A vector �eld V along c is said to be parallel if rc0V = 0.

If c0 itself is parallel we say that c is a geodesic. The geodesic equation
r 
0
0 = 0 is a nonlinear ordinary di�erential equation of second order, and

 is determined by its position and velocity at one point. It is easy to check
that k
0k is constant. We say that 
 is normalized if k
0k = 1. The restric-
tion of a geodesic to a closed bounded interval is called a geodesic segment.
A geodesic segment joining p to q in M is said to be minimal if its length
equals d(p; q).

A Riemannian manifold is complete if geodesics are de�ned for any values
of t. Hopf-Rinow's theorem asserts that if this is the case then any pair of
points, say p and q, inM can be joined by a (not necessarily unique) minimal
geodesic segment. Moreover, (M;d) is a complete metric space and bounded
and closed subsets are compact. In this paper, all manifolds are assumed
to be complete. The exponential map expp : TpM !M is de�ned by expx v
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= 
v(1; x), where 
(�) = 
v(�; p) is the geodesic de�ned by its position p and
velocity v at p. We can prove that expp tv = 
v(t; p) for any values of t.

The fundamental local invariant of Riemannian manifolds is the curva-
ture tensor R de�ned for X;Y;Z 2 X(M) by

R(X;Y )Z = rXrY Z �rYrXZ �r[X;Y ]Z;

where [ ; ] is the Lie bracket. Clearly, R is a tensor of type (3,1). Given
p 2M and a 2-dimensional subspace � � TpM , the quantity

K(u; v) =



R(u; v)v; u

�
kuk2kvk2 � hu; vi2

does not depend on the basis fu; vg � �. Hence, K(u; v) = K( �) depends
only on � and is called the sectional curvature of � at x.

Some interesting results are obtained when the curvature's sign is con-
stant. If K(�) 5 0 for any �, then we refer to the manifold as a manifold
with nonpositive curvature, in the other case, we refer to it as a manifold
with nonnegative curvature.

The next two important results are valid in manifolds with nonpositive
sectional curvature.

Theorem 2.1. Let M be a complete, simply connected Riemannian
manifold with nonpositive sectional curvature. Then M is di�eomorphic to
the Euclidean space Rn, n = dimM . More precisely, at any point p 2M , the
exponential mapping expp : TpM !M is a di�eomorphism.

Proof. See [2] and [14], p. 221, Theorem 4.1(2). �

A complete simply connected Riemannian manifold of nonpositive sec-
tional curvature is called a Hadamard manifold. From now on H is a
Hadamard manifold. Theorem 2.1 says that H has the same topology and
di�erential structure as the Euclidean space. Furthermore, some geomet-
rical properties of the Hadamard manifold are similar to some geometrical
properties of the Euclidean space.

A geodesic triangle �(p1p2p3) in H is the set consisting of three distinct
points p1, p2, p3 called the vertices and three geodesic segments 
i joining
pi+1 to pi+2 called the sides, where i = 1; 2; 3 (mod 3).

Theorem 2.2. Let �(p1p2p3) be a geodesic triangle in the manifold H.
Denote the geodesic segment joining pi+1 to pi+2 by 
i and set `i = l(
i) and
�i = ^

�

0i�1(0); �
0i+1(`i+1)

�
, where i = 1; 2; 3 (mod 3). Then

(2:1) �1 + �2 + �3 6 �;

(2:2) `2i+1 + `2i+2 � 2`i+1`i+2 cos �i 6 `2i
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and

(2:3) `i cos �i+1 + `i+1 cos �i > `i+2:

Proof. Inequalities (2.1) and (2.2) are proved in [14] Proposition 4.5,
p. 223. Inequality (2.3) is an immediate consequence of (2.2). �

A Riemannian submanifold S of M is called totally geodesic if all
geodesics in S are also geodesics in M and it is said to be totally convex
if for all points p; q in S, all geodesics joining p to q are contained in S. The
following results are true when the sectional curvature of M is nonnegative
everywhere. The �rst theorem is due to J. Cheeger and D. Gromoll.

Theorem 2.3. Let M be a complete noncompact Riemannian manifold
of nonnegative curvature. Then M contains a compact totally geodesic sub-
manifold S with dimS < dimM , which is totally convex. Furthermore, M
is di�eomorphic to the normal bundle of S.

Proof. See [14], Theorem 3.4, p. 215. �

Beginning at any point of M such an S, called the soul of M , can be
built. In [12], G. Perelman proved the following result.

Theorem 2.4. Let M be a complete non compact Riemannian manifold
of nonnegative sectional curvature. If there exists a point of M at which the
sectional curvature is positive, then the soul S of M consists of one point,
which is called a simple point, and M is di�eomorphic to Rn.

Proof. See [12]. �

The di�erential ofX 2 X(M) is the linear operator AX : X(M)! X(M),
given by AX(Y ) := rYX. Then, to each point p 2M , we assign the linear
map AX(p) : TpM ! TpM de�ned by

(2:4) AX(p)v = rvX:

If X = grad f , where f : M ! R, then AX(p) is the Hessian of f at p and
is denoted by Hess fp.

The divergence of X 2 X(M) is the trace of its di�erential. Therefore, for
a �xed p0 2M , a neighborhood 
 �M of p0 and a local orthonormal basis
E1; E2; : : : ; En, we get that

(2:5) divX = traceAX =

nX
i=1



AX(Ei); Ei

�
:
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Let M be a Riemannian manifold of dimension n. Take an atlas A =��

�;x�; x

i

�

�	
and a partition of unity f��g subordinate to 
�. For each

function f : M ! R, de�ne its integral asZ
M

fd� :=
X
�

Z
x�(
�)

�
�� � f �

q
det (g�

ij
)
�
Æ x�1� dx1� : : : dx

n

�;

where (g�
ij
) is the matrix of the metric ofM with relation to local coordinates

(xi�). We can prove that this de�nition does not depend on the choice of the
atlas and the partition of unity. Now the volume of 
 jM is given by

(2:6) Vol (
) :=

Z
M

�
d�;

where �
 : M ! R is de�ned by �
(p) = 1 if p 2 
 and �
(p) = 0 if p 62 
.

3. Strong monotonicity

Let M be a Riemannian manifold, X 2 X(M) a vector �eld and 
 a
geodesic in M . Consider the real function '(X;
) : M ! R de�ned by

'(X;
)(t) =



0(t);X

�

(t)

��
:

In [10, 11] S. Z. N�emeth de�nes a vector �eldX as monotone inM if '(X;
) is

monotone (non-decreasing) for all geodesic 
 in M and as strictly monotone
if '(X;
) is strictly monotone. It is also natural to extend the concept of
strong monotonicity to vector �elds de�ned in Riemannian manifolds, and
as far as we know that has not been done yet.

Definition 3.1. The vector �eldX 2 X(M) is called strongly monotone
when there exists � > 0 such that, for any geodesic 
 inM , the real function

	(X;
)(t) = '(X;
)(t)� �



0(0)

2t is monotone.

When a reference to the vector �eld X is not necessary, or when it is
implicit, we will use the notation 	
 instead of 	(X;
). Note that if � is a
reparametrization of 
 then 	
 is monotone if and only if 	� is monotone,
too.

Proposition 3.1. Let M be Riemannian manifold.
(i) The vector �eld X 2 X(M) is monotone in M if and only if, for any

two points p, q 2M and each geodesic 
 joining p to q, with 
(0) = p and

(t) = q,

(3:1)



0(0); P (
�1)

0

t
X(q)�X(p)

�
= 0:
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If the inequality in (3:1) is always strict, then X is strictly monotone.
(ii) The vector �eld X 2 X(M) is strongly monotone in M if and only if,

for any two points p, q 2M and each geodesic 
 joining p to q, with 
(0) = p
and 
(t) = q, there exists � > 0 such that

(3:2)



0(0); P (
�1)

0

t
X(q)�X(p)

�
= �




0(0)

 2t:
Proof. We will prove only (ii). The proof of (i) is analogous.
Consider a geodesic 
 and real numbers t1, t2. Set p = 
(t1) and q =


(t2). De�ne the geodesic �(t) = 

�
t1 + t(t2 � t1)

�
. Observe that �(0) = p,

�(1) = q and that �0(t) = (t2 � t1)

0
�
t1 + t(t2 � t1)

�
. Then, by de�nition of

	
 , it follows that

(t2 � t1)
�
	
(t2)� 	
(t1)

�
= (t2 � t1)

�


0(t2);X

�

(t2)

�� � 


0(t1);X

�

(t1)

�� � �



0(0)

 2(t2 � t1)

�
=


�0(1);X(q)

� � 
�0(0);X(p)
� � �



�0(0)

2
=


P (��1)

0

1�
0(1); P (��1)

0

1X(q)
� � 
�0(0); X(p)

� � �


�0(0)

2

=


�0(0); P (��1)

0

1X(q)�X(p)
� � �



�0(0)

 2:
Thus if



�0(0); P (��1)

0
1X(q)�X(p)

� ��

�0(0)

 2 = 0, then (t2� t1)
�
	
(t2)

�	
(t1)
�
= 0. Since the geodesic 
 and the real numbers t1, t2 are arbitrary,

the function 	
 is monotone and, by De�nition 3.1, it follows that X is
strongly monotone.

Now, given p; q 2M , p 6= q, and a geodesic 
 such that 
(0) = p, 
(t) = q,
t > 0, de�ne �(s) = 
(ts).




0(0); P (
�1)

0

t
X(q)�X(p)

� � �



0(0)

2t

=
1

t

�

P (
�1)

0

t
t
0(t); P (
�1)

0

t
X(p)

� � �



0(0)

 2t2 � 
 t
0(0);X(p)

��

=
1

t

��

�0(1);X(q)

� � �


�0(0)

2� � 
�0(0);X(p)

��

=
1

t

��
'(X;�)(1)� �



�0(0)

 2� � '(X;�)(0)
�
=

1

t

�
	�(1) � 	�(0)

�
:

Hence, if X is strongly monotone then, by De�nition 3.1, 	
 is monotone,

which implies that 1
t

�
	�(1)�	�(0)

�
= 0, and inequality (3.2) is in fact valid.

�
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Remark 3.1. Observe that, whenM is a Hadamard manifold, (3.2) can

be written as


exp

p
�1q; P (
�1)

0
1X(q) �X(p)

�
= �d2(p; q), where 
 is the

geodesic joining p to q with 
(0) = p and 
(1) = q.

Now we give an example of a strongly monotone vector �eld. Set
p0 2 H. By Hadamard's Theorem, the exponential map has inverse, exp�1

p0 :

H ! Tp0H, hence d(p; p0) = k exp�1
p0 pk. Therefore the function �p0 : H ! R,

de�ned by

(3:3) �p0(p) =
1

2
d2(p; p0);

is smooth and grad �p0(p) = � exp�1p p0, see [14].

Now let the function f be strictly increasing with f(0) = 0. Using the
Riemannian distance and the exponential map, the f -position vector �eld,
introduced in [9] by S. Z. N�emeth, is de�ned by

(3:4) P f (p) =

8><
>:
f
�
d(p0; p)

�
d(p0; p)

� � expp
�1p0

�
; if p 6= p0

0; if p = p0

or equivalently

(3:5) P f (p) =

8><
>:
f
�
d(p0; p)

�
d(p0; p)

grad �p0p; if p 6= p0

0; if p = p0.

In [9] it is proved that P f is strictly monotone. Note that P id(p) =
grad �p0(p), where id is the identity function, is strictly monotone. In the
next proposition, it will be proved that grad �p0(p) is strongly monotone.

Proposition 3.2. Let �p0 be the function de�ned by (3:3). For any �xed
p0 2 H, the gradient vector �eld grad �p0(p) is strongly monotone.

Proof. Take a geodesic 
 in H. By Proposition 3.1 it is enough to prove
that 	(X;
), where X = grad �p0 is monotone, i.e., (t2 � t1)

�
	
(t2)� 	
(t1)

�
= 0 for all t1; t2 2 R. We have two cases: 
 goes through p0 or 
 does not go
through p0.

Suppose that 
 goes through p0. Then there exists t0 such that 
(t0) = p0.
Without loss of generality, assume that t = t0. Then

	
(t) =



0(t); grad �p0

�

(t)

�� � 


0(0)

 2t
=



0(t);� exp�1


(t)
p0
�
� 


0(0)

 2t
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=



0(0)

2(t� t0)�




0(0)

2t = �


0(0)

 2t0:
Therefore 	
 is monotone.
Now suppose that 
 does not go through p0. With t1 and t2 given,

consider the geodesic triangle �(p0p1p2), where p0 = p0, p1 = 
(t1) and
p2 = 
(t2). Denote 
0, 
1 and 
2 the normalized geodesic segments join-
ing p1 to p2, p2 to p0, and p0 to p1, respectively. Set the numbers `0 =
l(
0), `1 = l(
1), `2 = l(
2) and the angles �1 = ^

�

00(0);�
02(`2)

�
, �2 =

^
�

01(0);�
00(`0)

�
and �0 = ^

�

02(0);�
01(`1)

�
. Note that `0 = (t2� t1)k
0k,

grad �p0(p1) = `2

0
2(`2) and that grad �p0(p2) = �`1
01(0). Since 	
(t1) =



0(t1); `2

0
2(`2)

� �k
0k2t1 and 	
(t2) = 


0(t2);�`1
01(0)

� �k
0k2t2 we have
that

(t2 � t1)
�
	
(t2)� 	
(t1)

�
= (t2 � t1)

��


0(t2);�`1
01(0)

� � k
0k2t2
�
�
�


0(t1); `2


0
2(`2)

� � k
0k2t1
��

= (t2 � t1)
�
 � 
0(t2); `1


0
1(0)

�
+



0(t1);�`2
02(`2)

� � (t2 � t1)k
0k2
�

= `0`1 cos �2 + `0`2 cos �1 � `20 = `0(`1 cos �2 + `2 cos �1 � `0):

Considering i = 1 in (2.3), we obtain that `1 cos �2+ `2 cos �1� `0 = 0. There-
fore 	
 is monotone for each geodesic 
 and the assertion of the theorem
follows from Proposition 3.1. �

Proposition 3.3. Let be M a Riemannian manifold and let X be a
vector �eld on M .

(i) X is monotone if and only if


AX(p)v; v

�
= 0 for any p 2M and

v 2 TpM .

(ii) If


AX(p)v; v

�
> 0 for any p 2M and v 2 TpM , then X is strictly

monotone.
(iii) X is strongly monotone if and only if there exists � > 0 such that

AX(p)v; v

�
= �kvk2, for any p 2M and v 2 TpM .

Proof. (i) and (ii) are proved in [10], Corollary 2.7, (i) and (ii). The
vector �eld X is strongly monotone if and only if there exists � > 0 such that

for all geodesics 
 the real function 	
(t) = '(X;
) � �k
0k2t is monotone.
But the function 	
 is monotone if and only if

	 0


(t) =




0(t);r
0(t)X

�
� �k
0k2 =




0(t); AX

�

(t)

�
:
0(t)

�
� �k
0k2 = 0

for all t. Therefore the inequality



0(t); AX

�

(t)

�
:
0(t)

� � �k
0k2 = 0 is

valid for each geodesic 
 if and only if


AX(p) � v; v

�
= �kvk2 for any p 2M

and all v 2 TpM . �
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A function f : M ! R is called convex, respectively strictly convex inM
if the composition of f with each geodesic 
 of M is a convex, respectively
strictly convex real function. We will call f strongly convex if and only if
its composition with each geodesic in M is strongly convex. In [8] several
convexity notions were related to the corresponding monotonicity notions.
Next we relate the notion of strong convexity to that of strong monotonicity.

Proposition 3.4. Let M be a Riemannian manifold and take f : M
! R.

(i) The function f is convex if and only if the vector �eld grad f is mono-
tone.

(ii) The function f is strictly convex if and only if the vector �eld grad f
is strictly monotone.

(iii) The function f is strongly convex if and only if the vector �eld grad f
is strongly monotone.

Proof. For (i) and (ii) see [13] and [17]. By de�nition, f is strongly
convex if and only if �(t) = f

�

(t)

�
is strongly convex for each geodesic 
.

By Proposition 1.1.2 of [7], p. 144, � is strongly convex if and only if there
exists Æ > 0 such that �(t) = �(t)� Æt2 is convex. But �(t) is convex if and

only if � 0(t) is monotone. Taking �



0(0)

 2 = 2Æ we get that 	(grad f;
)(t)

= � 0(t) is monotone if and only if grad f is strongly monotone. Therefore,
by De�nition 3.1 it follows that f is strongly convex if and only if the vector
�eld grad f is strongly monotone. �

Corollary 3.1. Fix p0 2 H. The map �p0(p) de�ned by (3:3) is strongly

convex and


Hess �p0(p) � v; v� = kvk2 for any p 2M and v 2 TpM .

Proof. By Proposition 3.2, the vector �eld grad�p0(p) is strongly mono-
tone. Then, by Proposition 3.4(iii), �p0(p) is strongly convex. Moreover, by

Proposition 3.3(iii), there exists � > 0 such that


Hess �p0(p) � v; v� = kvk2

for any p 2M . �

4. Some properties of strongly monotone vector �elds

Next we study some properties of strongly monotone vector �elds. Let
M be a Riemannian manifold and X 2 X(M) a strongly monotone vector
�eld. Consider the map f : M ! R de�ned by

(4:1) f(p) =
1

2



X(p)


2:

Proposition 4.1. If X 2 X(M) is strongly monotone then f is coer-
cive, i.e., for any �xed p0, limd(p0;p)!1 f(p) =1.
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Proof. Suppose that there are c > 0 and a sequence fpkg �M such
that limk!1 d(p0; pk) =1 and f(pk) 5 c, for all k. Let 
k be the normal-
ized geodesic with 
k(0) = p0 and 
k(tk) = pk, tk > 0. Then, by Proposition
3.1(ii), there exists � > 0 such that

�d(p0; pk) 5 �tk 5



k
0(0); P (
�1

k
)
0

tk
X(pk)�X(p0)

�
:

Using Cauchy{Schwarz inequality and knowing that f(pk) 5 c for any k,

we get in contradiction with our assumption that �d(p0; pk) 5
p
2c+



X(p0)


 ,

i.e., d(p0; pk) is bounded. �

Corollary 4.1. If X is strongly monotone then there exists only one
p̂ 2M such that X(p̂) = 0.

Proof. By Proposition 4.1 f is coercive. Therefore f has a minimum.
Set p̂ as a minimizer of f . Then

(4:2) 0 = dfp̂ � v =


AX(p̂) � v;X(p̂)

�
;

for all v 2 Tp̂M . Considering v = X(p̂) and using Proposition 3.3(iii) we get
that

(4:3) 0 =


AX(p̂):X(p̂);X(p̂)

�
= �



X(p̂)




for some � > 0. Then, by (4.3),


X(p̂)



 = 0. The uniqueness is an immedi-
ate consequence of the strong monotonicity's de�nition. �

Proposition 4.2. Let X 2 X(M) be a vector �eld and � : [0; !)!M
the integral curve of X through p 2M . If X is strongly monotone, then

there exists � > 0 such that


X

�
�(t)

�

 = 

X(p)


e�t for all t 2 [0; !).

Proof. If


X(p)



 = 0, then �(t) = p for all t 2 [0; !) and the result is

true. Suppose that


X(p)



 6= 0. De�ne  (t) = f
�
�(t)

�
, for all t 2 [0; !).

Then, by Proposition 3.3(iii), there exists � > 0 such that

(4:4)  0(t) =


AX

�
�(t)

�
�0(t);X

�
�(t)

��
=


AX

�
�(t)

�
X
�
�(t)

�
; X
�
�(t)

��
= �



X
�
�(t)

�

2
= 2� (t) = 0:

Hence  is non-decreasing. Since


X(p)



 6= 0, statement (4.4) implies

that  is strictly increasing and positive. Furthermore,  (t) =  (0)e�t for
all 0 5 t < !, which implies the statement of the proposition. �
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Proposition 4.3. Let X 2 X(M) be a vector �eld and � : (!; 0]!M
the integral curve of X through p 2M . If X is strongly monotone, then

there exists � > 0 such that


X

�
�(t)

�

 5 

X(p)


e�t for all t 2 (!; 0].

Proof. If


X(p)



 = 0, then �(t) = p for all t 2 [0;�!) and the result is

true. Suppose that


X(p)



 6= 0. De�ne the vector �eld Y by Y (q) = �X(q)
and the functions � : [0;�!)!M by �(t) = �(�t), and � : [0;�!)! R by

�(t) = 1
2



Y (�(t)

2. Then, by Proposition 3.3(iii), there exists � > 0 such
that

(4:5) �0(t) =


AY �

0(t); Y
�
�(t)

��
=


AY Y

�
�(t)

�
; Y
�
�(t)

��
= �



AXX

�
�(t)

�
;X
�
�(t)

��
5 ��




X

�
�(t)

�

 2
5 ��2�(t):

Since X(p) 6= 0, this implies that �(t) 5 �(0)e�2�t for all 0 5 t < �!, which
yields the statement of the proposition. �

5. Consequences of the existence of monotone vector �elds

It is well known that the existence of convex functions imposes some
topological consequences on the Riemannian manifoldM , see [15]. The con-
cept of monotonicity is, in a certain way, a generalization of the concept of
convexity. Then a natural and logical sequence is that the existence of a
monotone vector �eld on M imposes topological consequences also on M .

If 
 is a closed geodesic then '(X;
) is constant, see [9]. Therefore, if M
has a closed geodesic then all convex functions de�ned on M are trivial. In
the next proposition we will prove a more general result.

Proposition 5.1. Let M be a complete Riemannian manifold. If there
exists a strictly monotone X 2 X(M), then all totally geodesic compact sub-
manifolds of M are trivial, i.e. they consist of simple points.

Proof. We derive a contradiction on assuming that there exists a non-
trivial totally geodesic compact submanifold N of M . By Theorem 3.5 on
p. 299 of [14] the submanifold N has a closed geodesic 
, thus '(X;
)(t) is
constant and X is not strictly monotone. �

Proposition 5.2. Let M be a complete noncompact Riemannian man-
ifold of nonnegative sectional curvature. If there exists a strictly monotone
X 2 X(M), then the soul S of M consists of one point and M is di�eomor-
phic to Rn.

Proof. Take p 2M and build the soul S starting from p. By Theo-
rem 2.3, the soul S is a totally geodesic compact submanifold of M . Then,
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by Proposition 5.1 the submanifold S consists of one point. Again, accord-
ing to Theorem 2.3, M is di�eomorphic to the normal bundle of S. Since S
is a simple point, it follows that the normal bundle of S is di�eomorphic to
Rn. Therefore M is di�eomorphic to Rn. �

Remark 5.1. Substituting the hypothesis of an existing point where the
sectional curvature is positive by the hypothesis of the existence of a strictly
monotone vector �eld, we obtain in Proposition 5.2 the same result as in
Theorem 2.4.

It is known that the existence of nontrivial convex functions on M has
metric consequences; for example: the volume of M , as de�ned in (2.6),
is unbounded. Next we will show that the existence of strongly monotone
vector �elds also imposes this metric consequence.

First we introduce some de�nitions. Given X 2 X(M), de�ne the sets
M0 =

�
p 2M : X(p) 6= 0

	
and @M0 as the boundary ofM0. Note that M0

is open. De�ne the vector �eld U on M0 by

(5:1) U(p) =
X(p)

X(p)



 :
Fix p 2M0 and a neighborhood 
 of p inM0. Take the vector �elds E1 = U ,
E2; : : : ; En building an orthonormal basis of TqM for all q 2 
. Therefore,
after some algebraic manipulations we get from (2.5) and (5.1) that

(5:2) divU =

nX
i=2

1

kXk


AX(Ei); Ei

�
:

From Proposition 3.3(iii) and (5.2) it follows that if X is strongly monotone
then there exists � > 0 such that

(5:3) divU(q) =
(n� 1)�

X(q)




for all q 2 
.

Theorem 5.1. Let M be a complete Riemannian manifold. If X 2
X(M) is strongly monotone then the volume of M is in�nite.

Proof.We derive a contradiction by assuming thatM has �nite volume.
Let f be de�ned by (4.1). Since X is strongly monotone by Proposition 4.1,
there exists c > 0 such that M c =

�
p 2M : f(p) = c

	 �M0 is not empty.
Let �t be the 
ow generated by the vector �eld U , where U is the vector �eld
by de�nition in (5.1). First we show for all t > 0 that �t(M

c) �M c. Take
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p 2M c and � : [0; !)!M as the integral curve of U through p. De�ne the
function � (t) = f

�
�(t)

�
. Note that

� 0(t) =
1

2

d

dt



X
�
�(t)

�
;X
�
�(t)

��
=


r�0(t)X

�
�(t)

�
;X
�
�(t)

��

=


AX�

0(t);X
�
�(t)

��
=

*
AX

X
�
�(t)

�



X

�
�(t)

�

 ;X��(t)�
+
= �




X

�
�(t)

�



for some � > 0. Then � 0(t) > 0, i.e. � is a strictly increasing function. There-
fore � is well de�ned and �(t) 2M c and �t(M

c) �M c for all t > 0. Since
�t(M

c) �M c for all t > 0 then

(5:4) Vol
�
�t(M

c)
�
5 Vol (M c); 8 t = 0:

From [14], Lemma 5.12, p. 71, it follows that

(5:5)
d

dt
Vol

�
�t(M

c)
�����

t=0

=

Z
Mc

divU d�:

From (5.3) and (5.5) it follows that d

dt
Vol

�
�t(M

c)
� ��

t=0
> 0, implying that

there exists " > 0 such that Vol
�
�t(M

c)
�
> Vol (M c) for all 0 < t < ", in

contradiction with (5.4). Thus M has in�nite volume. �

6. Final remarks

If M has a nonnegative sectional curvature everywhere and if a strictly
monotone X exists, then M is di�eomorphic to Rn. If M has a nonpositive
sectional curvature everywhere, i.e. it is a Hadamard manifold, then the map
�p0 is strongly convex for all p0 2M . Hence grad �p0 is strongly monotone.
Therefore all Hadamard manifolds have in�nite volume. In [1] it is proved
that if there exists strictly convex f : M ! R, then M has in�nite volume.
The existence of strictly convex functions implies the existence of strictly
monotone vector �elds because, in that case, grad f is strictly monotone. It
is clear that all strongly monotone vector �elds are also strictly monotone.
Then the result of [1] could be stronger or weaker than our result, depending
on the answer to the following question: is there a Riemannian manifold
M with X 2 X(M) being strictly monotone and without f : M ! R being
strictly convex?
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