
Subsampled cubic regularization method for finite-sum minimization

M.L.N. Gonçalves ∗

November 16, 2022

Abstract

This paper proposes and analyzes a subsampled Cubic Regularization Method (CRM) for
solving finite-sum optimization problems. The new method uses random subsampling techniques
to approximate the functions, gradients and Hessians in order to reduce the overall computational
cost of the CRM. Under suitable hypotheses, first- and second-order iteration-complexity bounds
and global convergence analyses are presented. We also discuss the local convergence properties of
the method. Numerical experiments are presented to illustrate the performance of the proposed
scheme.

1 Introduction

Consider the following finite-sum optimization problem

min
x∈Rn

f(x) :=
1

d

d∑
i=1

fi(x), (1)

where each fi : Rn → R is a twice-differentiable function, potentially nonconvex. We are interested
in the case of very large dimension d. We denote the optimal value of (1) by f∗ and assume that
f∗ > −∞. Problem (1) has been the object of intense research in the last decades since many
important machine learning and statistics applications can be modeled in this form.

A plethora of methods has been proposed for solving the aforementioned optimization problem,
including first- and second-order procedures. Since the evaluations of the objective function f and
its first- and second-order derivatives may be computationally expensive for large value of d, the
most efficient algorithms for solving (1) are those that take advantages of the special structure of (1)
by considering approximations of f and/or its gradient and/or Hessian formed by a subset of the
functions {f1, . . . , fd}. The last approach is called subsampling strategy and it has been used, for
example, in the deterministic and probabilistic methods of [5, 6, 20] and [2, 3, 4, 9, 11, 17, 19, 22],
respectively.

In this work, we are interested in the Cubic Regularization Method (CRM), see [15, 18], which
is a globally convergent variant of the Newton method for unconstrained minimization of a twice
continuously differentiable function h. Basically, at the t-th iteration, the next iterate xt+1 of the

∗IME, Universidade Federal de Goiás, Campus II- Cx. Postal 131, CEP 74001-970, Goiânia-GO, Brazil
(maxlng@ufg.br). The work was supported in part by CNPq Grants 405349/2021-1 and 304133/2021-3.

1

CRM is obtained by minimizing a cubic model that consists of a third-order regularization of the
second-order Taylor approximation of the objective function h(·) around xt, i.e.,

min
y∈Rd

h(xt) + 〈∇h(xt), y − xt〉+
1

2
〈∇2h(xt)(y − xt), y − xt〉+

σt
6
‖y − xt‖3, (2)

where σt is the regularization parameter. An attractive feature of the cubic regularization methods
is that, for a given tolerance ε > 0, it takes at most O

(
ε−3/2

)
iterations to generate an ε-approximate

stationary point of the objective function h (i.e., an iterate xt such that ‖∇h(xt)‖2 ≤ ε), when h(·)
is a nonconvex function with Lipschitz continuous Hessian; see, for example, [18]. Remarkably, work
[8] proved that in the same problem class the standard Newton method (without regularization)
may need a number of iterations arbitrarily close to O

(
ε−2
)

to generate an ε-approximate stationary
point of the objective function h.

Here, in order to reduce the overall computational cost of the CRM for solving (1), we propose
a variant of it in which the function f and its gradient and Hessian are approximated by random
subsampling techniques. Essentially, the cubic model in (2) with h = f is replaced by

min
y∈Rd

fG(xt) + 〈∇fG(xt), y − xt〉+
1

2
〈∇2fH(xt)(y − xt), y − xt〉+

σt
6
‖y − xt‖3

where

fG(x) :=
1

|G|
∑
i∈G

fi(x), ∇fG(x) :=
1

|G|
∑
i∈G
∇fi(x), ∇2fH(x) :=

1

|H|
∑
i∈H
∇2fi(x), (3)

H ⊂ G ⊂ {1, . . . , d} are the subsamples, and |H| and |G| are their cardinality, respectively. By
assuming that the Hessian ∇2fH(x) is Lipschitz continuous for every H ⊂ {1, . . . , d} and that the
sequence {νt} defined by

νt := max{|fGt(xt+1)− f(xt+1)|, |fGt(xt)− f(xt)|}, ∀t ≥ 0,

is summable, it is shown that the new algorithm needs at most O
(
ε−3/2

)
calls of the oracle 1 to

generate an iterate xt such that ‖∇fGt(xt)‖ ≤ ε. Moreover, it is proven that an iterate xt satisfying

‖∇fGt(xt)‖ < εg and λmin
(
∇2fHt(xt)

)
> −εH ,

is generated in at most O(max{ε−
3
2

g , ε−3
g }) calls of the oracle. We remark that the same order

of iteration-complexity bounds of the full CRM (i.e., Gt = Ht = {1, . . . , d} for all t ≥ 0) are
obtained for the new method, in spite of inaccuracy in the functions, gradients and Hessians. Global
convergence properties for finding approximate first- and second-order stationary points are also
discussed under the aforementioned assumptions. We further discuss complexity estimates as well as
global convergence results of the proposed algorithm under a condition weaker than the summability
of the sequence {νt}. The local quadratic convergence rate of the method is also established under
standard hypotheses. Some numerical experiments, including comparisons with the subsampled
adaptive cubic regularization method in [3], are presented in order to illustrate the performance of
the method. In particular, it is verified that the use of subsampling techniques to approximate the

1Throughout this work, a call of the oracle means the partial or total evaluation of one of following terms f(·),
∇f(·) and ∇2f(·).

2

function f as well as its gradient and Hessian, improve considerably the numerical behavior of the
cubic regularization method for solving (1).

This work is organized as follows. Section 2 describes the subsampled cubic regularization
method and presents its first-order iteration-complexity bounds and global convergence analyses.
Subsection 2.1 is devoted to the second-order results, while the local convergence is established in
Subsection 2.2. Section 3 presents some numerical experiments of the proposed method and some
concluding remarks are given in Section 4.

2 Subsampled cubic regularization method

In this section, we formally state the subsampled cubic regularization method for computing approx-
imate solutions of (1) and present its first- and second-order iteration-complexity bounds. Global
and local convergence properties of the method are also discussed.

We start by describing the new method.

Algorithm 1. (Subsampled-CRM)

Step 0. Choose x0 ∈ Rn, θ ≥ 0, σ0 > 0, subsamples H0 ⊂ G0 ⊂ {1, . . . , d}, and set t := 0.

Step 1. Construct fGt(xt) and ∇fGt(xt) as in (3).

Step 2. Find the smallest integer i ≥ 0 such that 2iσt ≥ 2σ0. Choose subsample Ht so that
|Ht| ≥ |H0| and Ht ⊂ Gt, and set Ht,i ← Ht.

Step 2.1. Construct ∇f2
Ht,i

(xt) as in (3) and compute an approximate solution x+
t,i of the

subproblem

min
y∈Rd

M
Gt,Ht,i

xt,2iσt
(y) := fGt(xt)+〈∇fGt(xt), y−xt〉+

1

2
〈∇2fHt,i(xt)(y−xt), y−xt〉+

2iσt
6
‖y−xt‖3 (4)

such that

M
Gt,Ht,i

xt,2iσt
(x+
t,i) ≤ fGt(xt) and ‖∇MGt,Ht,i

xt,2iσt
(x+
t,i)‖ ≤ θmin

{
‖x+

t,i − xt‖
2, ‖∇fGt(xt)‖

}
. (5)

Step 2.2. Compute fGt(x
+
t,i) and ∇fGt(x+

t,i). If

fGt(xt)− fGt(x+
t,i) ≥

2iσt
12
‖x+

t,i − xt‖
3 (6)

and

‖∇fGt(x+
t,i)‖ ≤

(
3(2iσt)

4
+ σ0 + θ

)
‖x+

t,i − xt‖
2 (7)

hold, set it = i, and go to Step 3. Otherwise, choose Ht,i+1 so that

|Ht,i+1| = min{d2iσte|Ht|, |Gt|}, Ht,i+1 ⊂ Gt

and set i := i+ 1 and go to Step 2.1.

3

Step 3. Choose subsample G+
t such that |G+

t | ≥ |G0|. Set xt+1 := x+
t,it

, Gt+1 := G+
t , σt+1 := 2it−1σt,

t := t+ 1, and go to Step 1.

Some comments are in order. (i) As will be shown, the well-definedness of inner loop in Step 2
will be guaranteed, in particular, by the fact that Ht,i = Gt at some inner iteration i. In Step 3, the
sample size |Gt| does not necessary increase in the next iteration although it is expected that the
full sample size is reached at some iteration t. We refer the reader to [5, 6, 20], where some updates
rules for the subsamples sequences are discussed. (ii) Since the first condition in (5) is equivalent
to MGt,Ht

xt,2iσt
(x+
t,i) ≤MGt,Ht

xt,2iσt
(xt), we obtain that x+

t,i gives a decrease of the subsampled model in (4).

While, the second condition in (5) means that x+
t,i is an approximate first-order stationary point

for (4). We mention that conditions in (5) are similar to the ones used in [7, 14].
In what follows, we will present some convergence properties of Algorithm 1. The following

assumption is made throughout this work:

(A1) The Hessian ∇2fH is L-Lipschitz continuous for every H ⊂ {1, . . . , d}, i.e.,

‖∇2fH(y)−∇2fH(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

We begin by proving an auxiliar result.

Lemma 2.1. For given x ∈ Rn, σ > 0 and H ⊂ G ⊂ {1, . . . , d}, consider

MG,Hx,σ (y) = fG(x) + 〈∇fG(x), y − x〉+
1

2
〈∇f2

H(x)(y − x), y − x〉+
σ

6
‖y − x‖3. (8)

Assume that x+ ∈ Rn satisfies

MG,Hx,σ (x+) ≤ fG(x) and ‖∇MG,Hx,σ (x+)‖ ≤ θ‖x+ − x‖2. (9)

If
‖∇2fG(x)−∇2fH(x)‖ ≤ σ0‖x+ − x‖, σ ≥ 2(L+ 3σ0), (10)

then

fG(x)− fG(x+) ≥ σ

12
‖x+ − x‖3, ‖∇fG(x+)‖ ≤

(
3σ

4
+ σ0 + θ

)
‖x+ − x‖2. (11)

If additionally

∇f2
H(x) +

σ

2
‖x+ − x‖I � −θ‖x+ − x‖I, (12)

then

−λmin
(
∇2fG(x+)

)
≤ σ + 2(θ + σ0 + L)

2
‖x+ − x‖. (13)

Proof. It follows from A1 that

fG(x+) ≤ fG(x) + 〈∇fG(x), x+ − x〉+
1

2
〈∇2fG(x)(x+ − x), x+ − x〉+

L

6
‖x+ − x‖3 (14)

and ∥∥∇fG(x+)−∇fG(x)−∇2fG(x)(x+ − x)
∥∥ ≤ L

2
‖x+ − x‖2. (15)

4

Using (14), the definition of MG,Hx,σ in (8), and the first inequalities in (9) and (10), we have

fG(x+) ≤ MG,Hx,σ (x+) +
1

2
〈(∇2fG(x)−∇2fH(x))(x+ − x), x+ − x〉+

L− σ
6
‖x+ − x‖3

≤ fG(x) +
1

2
‖∇2fG(x)−∇2fH(x)‖‖x+ − x‖2 +

L− σ
6
‖x+ − x‖3

≤ fG(x) +

(
σ0

2
+
L− σ

6

)
‖x+ − x‖3,

which, combined with the second inequality in (10), proves the first inequality in (11).
Now, using the definition of MG,Hx,σ in (8), the second inequality in (9), the first inequality in (10),

and (15), we get

‖∇fG(x+)‖ ≤ ‖∇fG(x+)−∇MG,Hx,σ (x+)‖+ ‖∇MG,Hx,σ (x+)‖

=
∥∥∥∇fG(x+)−∇fG(x)−∇2fH(x)(x+ − x)− σ

2
‖x+ − x‖(x+ − x)

∥∥∥+ ‖∇MG,Hx,σ (x+)‖

≤
∥∥∇fG(x+)−∇fG(x)−∇2fH(x)(x+ − x)

∥∥+
σ

2
‖x+ − x‖2 + ‖∇MG,Hx,σ (x+)‖

≤
∥∥∇fG(x+)−∇fG(x)−∇2fG(x)(x+ − x)

∥∥+ ‖∇2fG(x)−∇2fH(x)‖‖x+ − x‖

+
(σ

2
+ θ
)
‖x+ − x‖2

≤
(
L+ σ

2
+ σ0 + θ

)
‖x+ − x‖2,

which, combined with the second inequality in (10), proves the second inequality in (11).
On the other hand, by A1 and the first inequality in (10), for any d ∈ Rn, we have

〈
(
∇f2
H(x)−∇2fG(x+)

)
d, d〉 = 〈

(
∇f2
H(x)−∇2fG(x)

)
d, d〉+ 〈

(
∇2fG(x)−∇2fG(x+)

)
d, d〉

≤ ‖∇f2
H(x)−∇2fG(x)‖‖d‖2 + ‖∇2fG(x)−∇2fG(x+)‖‖d‖2

≤ 〈(σ0 + L) ‖x+ − x‖I d, d〉.

Since the inequality above holds for all d ∈ Rn, it follows that

∇f2
H(x) � ∇2fG(x+) + (σ0 + L) ‖x+ − x‖I,

which, using the Weyl’s inequality [10], yields

λmin
(
∇f2
H(x)

)
≤ λmin

(
∇2fG(x+)

)
+ (σ0 + L) ‖x+ − x‖. (16)

Now, assuming that (12) is true, we also have

λmin
(
∇f2
H(x)

)
≥ −

(σ
2

+ θ
)
‖x+ − x‖. (17)

Finally, combining (16) and (17), we obtain (13).

The next lemma shows that the inner procedure in Step 1 stops in a finite number of trials.
Moreover, it provides an estimate of the number of function, gradient and Hessian evaluations after
a certain number of iterations.

5

Lemma 2.2. The sequence of regularization parameters {σt} in Algorithm 1 satisfies

σ0 ≤ σt ≤ max {2(L+ 3σ0), 1/α} := σmax, ∀t ≥ 0, (18)

where α is such that |H0| = αd. Moreover, the number OT of calls of the oracle after T iterations is
bounded as follows:

OT ≤ 3[3T + log2(σmax)− log2(σ0)]. (19)

Proof. Clearly, (18) is true for t = 0. Suppose that (18) is true for some t ≥ 0. If it = 0, it follows
from Step 1 and the induction assumption that

σ0 ≤ σt+1 =
1

2
σt ≤ σt ≤ max {2(L+ 3σ0), 1/α} ,

which proves that (18) holds for t+ 1. Now, if it ≥ 1, then we must have

2it−1σt ≤ max {2(L+ 3σ0), 1/α} . (20)

Indeed, assuming by contradiction that (20) is not true, that is

2it−1σt > 2(L+ 3σ0), 2it−1σt > 1/α. (21)

Hence, as |H0| = αd and |Ht| ≥ |H0|, the second inequality in (21) yields that

2it−1σt|Ht| ≥ 2it−1σt|H0| > d ≥ |Gt|,

which in turn implies that |Ht,it−1| = |Gt|. So, ‖∇2fGt(x
+
t,i) − ∇2fHt,it−1(x+

t,i)‖ = 0. Therefore, by

combining the last equality, the first equality in (21) and Lemmas 2.1 with x := xt, x
+ := x+

t,i,

G := Gt, H := Ht,it−1 and σ := 2it−1σt, we obtain that the inequalities in (6) and (7) would have
been satisfied for i = it − 1, contradicting the minimality of it. Therefore, (20) is true.

Finally, note that at the t-th iteration of Algorithm 1 the number of calls of the oracle is bounded
by 2 + 3(it + 1) times. On the other hand,

σt+1 = 2it−1σt =⇒ 3(it + 1) + 2 = 3 [2 + log2(σt+1)− log2(σt)] + 2.

Thus,

OT ≤
T∑
t=0

[3(it + 1) + 2] ≤
T∑
t=0

9 + 3 log2(σT+1)− 3 log2(σ0)

≤ 3[3T + log2(σmax)− log2(σ0)],

where the last inequality is due to (18).

It follows from (19) that

OT
T
≤ 9 +

3

T
[log2(σmax)− log2(σ0)],

which implies that the average number of oracle calls per inner iteration, up to the T -th outer
iteration, is asymptotically bounded by 9.

We next present a key result for our analysis.

6

Lemma 2.3. Let {xt}Tt=1 be generated by Algorithm 1 and define

νt := max{|fGt(xt+1)− f(xt+1)|, |fGt(xt)− f(xt)|}, ∀t ≥ 0. (22)

Then,

f(xt)− f(xt+1) ≥ σt+1

6
‖xt+1 − xt‖3 − 2νt, t = 0, . . . , T − 1, (23)

and
T−1∑
t=0

‖∇fGt(xt+1)‖
3
2 ≤

6(f(x0)− f∗ + 2
∑T−1

t=0 νt)
(

3σmax
2 + σ0 + θ

) 3
2

σ0
. (24)

Proof. By (6) and σt+1 = 2it−1σt, we have

fGt(xt)− fGt(xt+1) ≥ σt+1

6
‖xt+1 − xt‖3, t = 0, . . . , T − 1.

On the other hand, it follows from (22) that

fGt(xt)− fGt(xt+1) = f(xt)− f(xt+1) + fGt(xt)− f(xt)− fGt(xt+1) + f(xt+1)

≤ f(xt)− f(xt+1) + |fGt(xt)− f(xt)|+ |fGt(xt+1) + f(xt+1)|
≤ f(xt)− f(xt+1) + 2νt.

By combining the above inequalities, we find

f(xt)− f(xt+1) + 2νt ≥
σt+1

6
‖xt+1 − xt‖3, t = 0, . . . , T − 1,

which is equivalent to the inequality in (23).
Summing up the inequalities in (23) and using the definition of f∗ and (18), we get

f(x0)− f∗ + 2

T−1∑
t=0

νt ≥ f(x0)− f(xT) + 2

T−1∑
t=0

νt

≥
T−1∑
t=0

σt+1

6
‖xt+1 − xt‖3

≥ σ0

6

T−1∑
t=0

‖xt+1 − xt‖3,

and so
T−1∑
t=0

‖xt+1 − xt‖3 ≤
6(f(x0)− f∗ + 2

∑T−1
t=0 νt)

σ0
. (25)

On the other hand, it follows from (7), the fact that σt+1 = 2it−1σt and (18) that

‖∇fGt(xt+1)‖ ≤
(

3σt+1

2
+ σ0 + θ

)
‖xt+1 − xt‖2 ≤

(
3σmax

2
+ σ0 + θ

)
‖xt+1 − xt‖2,

which, combined with (25), proves (24).

7

We next derive an iteration-complexity bound for Algorithm 1 to obtain approximate stationary
points of problem (1).

Theorem 2.4 (Iteration-complexity bound for Algorithm 1). Let {xt}Tt=1 be generated by Algo-
rithm 1. Assume that

lim
T→∞

1

T

T∑
t=0

νt = 0, (26)

where νt is as in (22). Given ε ∈ (0, 1), define T0(ε) any non-negative integer such that:

T ≥ T0(ε) =⇒ 1

T

T−1∑
t=0

νt ≤
σ0ε

3
2

24
(

3σmax
2 + σ0 + θ

) 3
2

. (27)

If

T ≥ max

12(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

σ0
ε−

3
2 , T0(ε)

 , (28)

then
min

t=0,...,T−1
‖∇fGt(xt+1)‖ ≤ ε. (29)

Proof. First of all, it follows from the assumption in (26) that T0(ε) is well-defined for any given ε.
Define t∗ := arg minj∈{0,...,T−1} ‖∇fGj (xj+1)‖. Hence, it follows from (24) that

‖∇fGt∗ (xt∗+1)‖
3
2 ≤

6(f(x0)− f∗ + 2
∑T−1

t=0 νt)
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0

=
6(f(x0)− f∗)

(
3σmax

2 + σ0 + θ
) 3

2

Tσ0
+

12
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0

T−1∑
t=0

νt.

Since (28) holds, we have T ≥ T0(ε), and so it follows from (27) that

12
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0

T−1∑
t=0

νt ≤
ε
3
2

2
.

On the other hand, also by (28), we have

6(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0
≤ ε

3
2

2
.

By combining the last three inequalities, we obtain

‖∇fGt∗ (xt∗+1)‖
3
2 ≤ ε

3
2 ,

which proves (29).

8

Remark 2.5. Assumption in (26) is weaker than the condition of summability of the sequence
{νt} required in the iteration-complexity analyses of the subsampled inexact Newton and subsampled
spectral gradient methods in [5, 20]. Indeed, if {νt} is summable, then

0 ≤ 1

T

T∑
t=0

νt ≤
1

T

∞∑
t=0

νt,

which, by taking the limit as T goes to infinity, implies (26). On the other hand, as pointed out
in [13], there exist sequences {νt} satisfying (26) that are not summable; an important class of
examples is given by the sequences {νt} such that νt → 0 as k → ∞ (see [13, Corollary 2] or the
proof of Theorem 2.7(a)).

Under the assumption that {νt} is summable, Theorem 2.3 implies, in particular, an iteration-

complexity bound of O
(
ε−

3
2

)
for Algorithm 1 to generate an approximate stationary points of

problem (1).

Corollary 2.6. Let {xt}Tt=1 be generated by Algorithm 1. Assume that
∑∞

t=0 νt < +∞, where νt is
as in (22). Given ε ∈ (0, 1), if

T ≥ 12

σ0

(
3σmax

2
+ σ0 + θ

) 3
2

max

{
f(x0)− f∗, 2

∞∑
t=0

νt

}
ε−

3
2 , (30)

then
min

t=0,...,T−1
‖∇fGt(xt+1)‖ ≤ ε. (31)

As a consequence, Algorithm 1 needs at most O
(
ε−

3
2

)
calls of the oracle to generate an iterate xt

such that ‖∇fGt(xt)‖ ≤ ε.

Proof. As discussed in Remark 2.5, if {νt} is summable, then (26) holds. Moreover, by defining

T0(ε) :=
24

σ0

(
3σmax

2
+ σ0 + θ

) 3
2

ε−
3
2

∞∑
t=0

νt <∞,

we obtain

T ≥ T0(ε) =⇒ 1

T

T−1∑
t=0

νt ≤
1

T

∞∑
t=0

νt ≤
σ0ε

3
2

24
(

3σmax
2 + σ0 + θ

) 3
2

,

that is, (27) holds. Thus, (30) can be rewritten as

T ≥ max

12(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

σ0
ε−

3
2 , T0(ε)

 ,

and hence (31) follows from Theorem 2.3.
The second part of the theorem follows trivially from the first one and (19).

9

In the case that only exact functions, gradients and Hessians evaluations are considered, i.e., Gt =

Ht = {1, . . . , d} for all t ≥ 0, an iteration-complexity bound of O
(
ε−

3
2

)
for the cubic regularization

method is obtained from Corollary 2.6.
We claim that, by following the arguments in [13, Corollary 2 and Remark 4], an iteration-

complexity bound of O
(
ε−

3
2

)
similar to the one in (30) for Algorithm 1 can be proven under the

assumption that νt ≤ ε/t, for all t ≥ 0, instead of summability of {νt}.
We next establish, as a by-product from the previous complexity estimates, the global convergence

of Algorithm 1.

Theorem 2.7 (Global convergence of Algorithm 1). Let {xt}Tt=1 be generated by Algorithm 1. The
following statements hold:

(a) if νt → 0 as k → ∞, then either there exists t∗ ≤ T such that ‖∇fGt∗ (xt∗+1)‖ = 0 or
lim inft→∞ ‖∇fGt(xt+1)‖ = 0;

(b) if
∑∞

t=0 νt < +∞, then limt→∞ ‖∇fGt(xt+1)‖ = 0.

Proof. (a) Let δ > 0. Since νt → 0 as k → ∞, it follows that there exist constants C and t(δ) > 0
such that νt ≤ C for all t, and νt ≤ δ for all t ≥ t(δ). Hence, for all T > max{2Ct(δ/2)/δ, t(δ/2)+1},

1

T

T∑
t=0

νt =
1

T

t(δ/2)−1∑
t=0

νt +
1

T

T∑
t=t(δ/2)

νt

≤ 1

T

t(δ/2)−1∑
t=0

C +
1

T

T∑
t=t(δ/2)

δ

2

≤ Ct(δ/2)

T
+
δ

2

≤ δ

2
+
δ

2
= δ,

which implies that limT→∞
1
T

∑T
t=0 νt = 0 and (27) holds for:

T0(ε) := max{2Ct(δ/2)/δ, t(δ/2) + 1},

with δ := σ0ε
3
2 /(12 (3σmax/2 + σ0 + θ)

3
2). Thus, it follows from Theorem 2.3 that, if

T ≥ max

{
2(f(x0)− f∗)

δ
,
2

δ
Ct

(
δ

2

)
, t

(
δ

2

)
+ 1

}
,

then
min

t=0,...,T−1
‖∇fGt(xt+1)‖ ≤ ε.

As ε > 0 is arbitrary, this proves that:

lim
T→∞

(
min

t=0,...,T−1
‖∇fGt(xt+1)‖

)
= 0.

Therefore, either there exists t∗ ≤ T such that ‖∇fGt∗ (xt∗+1)‖ = 0 or lim inft→∞ ‖∇fGt(xt+1)‖ = 0.

10

(b) By taking the limit in (24) as T goes to infinity, we obtain

∞∑
t=0

‖∇fGt(xt+1)‖
3
2 <∞

which in turn implies limt→∞ ‖∇fGt(xt+1)‖ = 0.

Remark 2.8. Using the fact that

0 ≤ ‖∇f(xt+1)‖ ≤ ‖∇f(xt+1)−∇fGt(xt+1)‖+ ‖∇fGt(xt+1)‖,

and under the additional assumption that limt→+∞ ‖∇fGt(xt+1) − ∇f(xt+1)‖ = 0, it follows from
Theorem 2.3(b) that limt→∞ ‖∇f(xt)‖ = 0.

2.1 Second-order iteration-complexity and global convergence analyses

In this section, we present second-order iteration-complexity bounds and global convergence results
for Algorithm 1. For this, it is required that x+

t,i satisfies, besides (5), the following condition

∇2fHt,i(xt) +
2iσt

2
‖x+

t,i − xt‖I � −θ‖x
+
t,i − xt‖I, (32)

and, regarding the acceptance criteria in Step 2.2, it is required (besides (6) and (7)) the following
inequality

−λmin
(
∇2fGt(x

+
t,i)
)
≤ σ + 2(θ + σ0 + L)

2
‖x+

t,i − xt‖. (33)

Note that (32), together with (5), means that x+
t,i approximately satisfies the first- and second-order

optimality conditions for a local minimizer of the cubic model M
Gt,Ht,i

xt,2iσt
(·). The well-definedness of

this new variant of Algorithm 1 can be proven using the second part of Lemma 2.1 and similar
arguments as those in the proof of Lemma 2.2.

Theorem 2.9. Let {xt}Tt=1 be generated by Algorithm 1 with (5)–(7), (32) and (33) being satisfied
for all t and i ≤ it. Assume that

lim
T→∞

1

T

T∑
t=0

νt = 0, (34)

where νt is as in (22). Given εg, εH ∈ (0, 1), define T̂0(εg, εH) any non-negative integer such that:

T ≥ T̂0(εg, εH) =⇒ 1

T

T−1∑
t=0

νt ≤ min

 σ0ε
3
2
g

24
(

3σmax
2 + σ0 + θ

) 3
2

,
σ0ε

3
H

3[σ + 2(θ + σ0 + L)]3

 . (35)

If

T ≥ max

12(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

σ0ε
3
2
g

, T̂0(εg, εH),
3(f(x0)− f∗)(σ + 2(θ + σ0 + L))3

2σ0ε3H

 ,

(36)
then there exists t∗ ≤ T such that

‖∇fGt∗ (xt∗)‖ < εg or λmin
(
∇2fHt∗ (xt∗)

)
> −εH . (37)

11

Proof. First of all, it follows from the assumption in (34) that T0(εg, εH) is well-defined for any given
εg, εH > 0. As in the proof of Lemma 2.3 (see (25)), we have

T‖st∗‖3 ≤
T−1∑
t=0

‖xt+1 − xt‖3 ≤
6(f(x0)− f∗ + 2

∑T−1
t=0 νt)

σ0
.

where st = xt+1 − xt and t∗ = argminj∈{0,...,T−1} ‖sj‖3. Hence,

‖st∗‖3 ≤
6(f(x0)− f∗)

Tσ0
+

12
∑T−1

t=0 νt
Tσ0

. (38)

On the other hand, it follows from (7), the fact that σt+1 = 2it−1σt and (18) that

‖∇fGt(xt∗+1)‖ ≤
(

3σt∗+1

2
+ σ0 + θ

)
‖xt∗+1 − xt∗‖2 ≤

(
3σmax

2
+ σ0 + θ

)
‖st∗‖2,

which, combined with (38), yields

‖∇fGt∗ (xt∗+1)‖
3
2 ≤

6(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0
+

12
(

3σmax
2 + σ0 + θ

) 3
2

Tσ0

T−1∑
t=0

νt. (39)

Now, it follows from (33) and (38) that

−λmin
(
∇2fHt∗ (xt∗+1)

)
≤ σ + 2(θ + σ0 + L)

2
‖st∗‖

≤ σ + 2(θ + σ0 + L)

2

[
6(f(x0)− f∗)

Tσ0
+

12
∑T−1

t=0 νt
Tσ0

]1/3

≤

[
3(σ + 2(θ + σ0 + L))3(f(x0)− f∗)

4Tσ0
+

3(σ + 2(θ + σ0 + L))3
∑T−1

t=0 νt
2Tσ0

]1/3

.

Therefore, (37) now follows from the last inequality, (39) and (36).

Under the assumption that {νt} is summable, Theorem 2.9 implies, in particular, an iteration-

complexity bound of O
(

max{ε−
3
2

g , ε−3
g }
)

for Algorithm 1 to generate an approximate second-order

stationary points of problem (1).

Corollary 2.10. Let {xt}Tt=1 be generated by Algorithm 1 with (5)–(7), (32) and (33) being satisfied
for all t and i ≤ it. Assume that

∑∞
t=0 νt <∞, where νt is as in (22). Given εg, εH ∈ (0, 1), if

T ≥ 3

σ0
max

{
τ1(f(x0)− f∗), 2 max{τ1, τ2}

∞∑
t=0

νt, τ2(f(x0)− f∗)

}
max{ε−

3
2

g , ε−3
g }, (40)

where τ1 := 4 (3σmax/2 + σ0 + θ)
3
2 and τ2 := [σ+2(θ+σ0 +L)]3/2 then there exists t∗ ≤ T such that

‖∇fGt∗ (xt∗)‖ < εg and λmin
(
∇2fHt∗ (xt∗)

)
> −εH . (41)

12

As a consequence, Algorithm 1 needs at most O
(

max{ε−
3
2

g , ε−3
g }
)

calls of the oracle to generate an

iterate xt∗ satisfying (41). Moreover, either there exists t̂ such that ∇Gt̂f(xt̂) = 0 and ∇2fHt̂
(xt̂) � 0

or
lim

t→+∞
max

{
‖∇fGt(xt)‖,−λmin

(
∇2fHt(xt)

)}
= 0. (42)

Proof. As discussed in Remark 2.5, if {νt} is summable, then (34) holds. Moreover, by defining

T̂0(εg, εH) := max

24
(

3σmax
2 + σ0 + θ

) 3
2

σ0ε
3
2
g

,
3[σ + 2(θ + σ0 + L)]3

σ0ε3H


∞∑
t=0

νt <∞,

we find, using the fact that min{a, b}−1 = max{1/a, 1/b} for all a, b > 0, that

T ≥ T̂0(εg, εH) =⇒ 1

T

T−1∑
t=0

νt ≤
1

T

∞∑
t=0

νt ≤ min

 σ0ε
3
2
g

24
(

3σmax
2 + σ0 + θ

) 3
2

,
σ0ε

3
H

3[σ + 2(θ + σ0 + L)]3

 ,

that is, (35) holds. Thus, (40) implies that

T ≥ max

12(f(x0)− f∗)
(

3σmax
2 + σ0 + θ

) 3
2

σ0ε
3
2
g

, T̂0(εg, εH),
3(f(x0)− f∗)(σ + 2(θ + σ0 + L))3

2σ0ε3H

 ,

and hence (41) follows from Theorem 2.9.
The second part of the theorem follows trivially from the first one and (19).
Now, by (33) and (25), we have

−
T∑
t=0

[λmin
(
∇2fGt(xt+1)

)
]3 ≤ [σ + 2(θ + σ0 + L)]3

8

T∑
t=0

‖xt+1 − xt‖3

≤
3[σ + 2(θ + σ0 + L)]3(f(x0)− f∗ + 2

∑T−1
t=0 νt)

4σ0
.

Therefore, (42) now follows by taking the limit in the last inequality and (24) as T goes to infinity.

Remark 2.11. It follows from (42) that the addition of requirement (32) in Step 2.1 of Algorithm 1
allows the iterates to escape from nondegenerate saddle points.

2.2 Local convergence analysis

This section is dedicated to establish some local converge properties of Algorithm 1. Forward this
goal, we assume that full precision for the function and gradient has been reach at some iteration
t̄ and that the algorithm continues with |Gt| = d for all t ≥ t̄. Moreover, the following additional
hypothesis is assumed:

(A3) There exists µ > 0 such that ∇2f(x) � µI whenever

f(x) ≤ f(xt̄).

13

By (23) and the fact that νt = 0 for all t ≥ t̄, we have

f(xt) ≤ f(xt−1) ≤ . . . ≤ f(xt̄+1) ≤ f(xt̄), ∀t ≥ t̄,

which, combined with A3, yields
∇2f(xt) � µI, ∀t ≥ t̄.

From this remark, we are able to show the local quadratic convergence rate for Algorithm 1.

Theorem 2.12. Let {xt}t≥0 be generated by Algorithm 1. Given α ∈ [0, 1), if

‖∇2f(xt)−∇2fHt,it
(xt)‖| ≤ αµ, (43)

and

‖∇f(x0)‖ ≤
(

3σmax
2

+ σ0 + θ

)−1 (1− α)3µ2

(1 + θ)2
, (44)

then

‖∇f(xt)‖ ≤
(

3σmax
2

+ σ0 + θ

)−1 µ2

(θ + 1)2
(1− α)2t+2

, ∀t ≥ 1. (45)

Proof. First, we will show that

‖∇f(xt+1)‖ ≤
(

3σmax
2

+ σ0 + θ

)
(1 + θ)2

(1− α)2µ2
‖∇f(xt)‖2 (46)

for all t ≥ 0. Assume that

‖∇f(xt)‖ ≤
(

3σmax
2

+ σ0 + θ

)−1 (1− α)3µ2

(1 + θ)2
. (47)

for some t ≥ 0. From (43), we obtain, for any v 6= 0, that

vT (∇2f(xt)−∇2fHt,it
(xt))v ≤ ‖∇2f(xt)−∇2fHt,it

‖‖v‖2 ≤ αµ‖v‖2 = vT (αµI)v,

which implies
∇2fHt,it

(xt)) � ∇2f(xt)− αµI.

Hence, by Weyl’s inequality, we find

λmin
(
∇2fHt,it

(xt))
)
≥ λmin

(
∇2f(xt)

)
− αµ ≥ (1− α)µ > 0. (48)

On the other hand, it follows from the second inequality in (5) that

‖MHt,it

xt,2itσt
(xt+1)‖ ≤ θ‖∇f(xt)‖, (49)

where

∇MHt,it

xt,2itσt
(xt+1) = ∇f(xt) +∇2fHt,it

(xt) (xt+1 − xt) +
2itσt

2
‖xt+1 − xt‖ (xt+1 − xt) .

From the last equality, we get(
∇2fHt,it

(xt) +
2itσt

2
‖xt+1 − xt‖I

)
(xt+1 − xt) = ∇MHt,it

xt,2itσt
(xt+1)−∇f(xt)

14

=⇒ xt+1 − xt = −
(
∇2fHt,it

(xt) +
2itσt

2
‖xt+1 − xt‖I

)−1 (
∇MHt,it

xt,2itσt
(xt+1)−∇f(xt)

)
.

Then, by (48) and (49), we have

‖xt+1 − xt‖ =

∥∥∥∥∥
(
∇2fHt,it

(xt) +
2itσt

2
‖xt+1 − xt‖I

)−1 (
∇MHt,it

xt,2itσt
(xt+1)−∇f(xt)

)∥∥∥∥∥
≤
‖∇MHt,it

xt,2itσt
(xt+1)−∇f(xt)‖

λmin
(
∇2fHt,it

(xt)
)

≤ (1 + θ)‖∇f(xt)‖
(1− α)µ

,

which, combined with (7) and (18), yields

‖∇f(xt+1)‖ ≤
(

3σmax
2

+ σ0 + θ

)
‖xt+1 − xt‖2

≤
(

3σmax
2

+ σ0 + θ

)
(1 + θ)2

(1− α)2µ2
‖∇f(xt)‖2.

Consequently, by (47) and the fact that α ∈ [0, 1), we also have

‖∇f(xt+1)‖ ≤
(

3σmax
2

+ σ0 + θ

)
(1 + θ)2

(1− α)2µ2

(
3σmax

2
+ σ0 + θ

)−1 (1− α)3µ2

(1 + θ)2
‖∇f(xt)‖

= (1− α)‖∇f(xt)‖ <
(

3σmax
2

+ σ0 + θ

)−1 (1− α)3µ2

(1 + θ)2

Thus, by induction, (46) holds for all t ≥ 0.
Denoting

δt =

(
3σmax

2
+ σ0 + θ

)
(1 + θ)2

(1− α)2µ2
‖∇f(xt)‖,

it follows from (46) that
δt+1 ≤ δ2

t ∀t ≥ 0.

Moreover, by (44), we also have

δ0 =

(
3σmax

2
+ σ0 + θ

)
(1 + θ)2

(1− α)2µ2
‖∇f(x0)‖ ≤ 1− α.

Therefore, for all t ≥ 1,

‖∇f(xt)‖ =

(
3σmax

2
+ σ0 + θ

)−1 (1− α)2µ2

(1 + θ)2
δt ≤

(
3σmax

2
+ σ0 + θ

)−1 (1− α)2µ2

(1 + θ)2
δ2t

0

≤
(

3σmax
2

+ σ0 + θ

)−1 (1− α)2µ2

(1 + θ)2
(1− α)2t ,

which implies (45).

15

Table 1: Datasets: problem dimension n and the number of training samples d

Name n d

Cina0 132 16033

Gisette 5000 6000

Madelon 500 2000

Secom 590 1567

3 Numerical Experiments

In this section, we explore the numerical behavior of Algorithm 1 (subsampled-CRM) to solve the
l2-logistic problem. The computational results were obtained using MATLAB R2018a on a machine
with a 3.5 GHz Dual-Core Intel Core i5 processor and 16 GB 2400 MHz DDR4 memory. The proposed
algorithm was compared with two other schemes: the full-CRM, which corresponds to Algorithm 1
with Gt = Ht = {1, . . . , d} for all t ≥ 0, and the subsampled Adaptive Cubic Regularization method
(subsampled-ARC) of [3] where, at each iteration, the Hessian is approximated by ∇2fHk

(x) :=
1/|Hk|

∑
i∈Hk

∇2fi(x) with

|Hk| = max

{
0.005d,min

{
0.1d,

⌈
4ρ

Ck

(
2ρ

Ck
+

1

3

)
log

(
2n

0.2

)⌉}}
,

and ρ and Ck are updated as described in [3]. The initialization parameters in the subsampled-ARC
method were fixed as suggested in [3, Section 8.1], while, in the subsampled-CRM, they were set
as θ = 5, σ0 = 0.1, G0 = 0.1d and H0 = Ht = G0. Moreover, we update the sample Gt such that
|Gt| = min{d, d1.25t|G0|e} for all t ≥ 0. For all methods, each cubic subproblem was approximately
solved by the Barzilai–Borwein gradient method [1] combined with the nonmonotone linesearch
of [16]. The major per iteration cost of the last method is one Hessian-vector product, needed to
compute the gradient of the cubic model.

We use as test problem the l2-logistic problem of the form

min
x∈Rn

f(x) :=
1

d

d∑
i=1

fi(x) =
[
log(1 + e−bia

T
i x) +

µ

2
‖x‖22

]
, (50)

where {(ai, bi)}di=1 ⊂ Rn × {−1, 1} is the dataset and µ > 0 is the regularization parameter. We set
µ = 0.001. The used data sets are from [12, 21] and each one of them is described in Table 1. For
all instances, we used x0 = (0, . . . , 0)T as starting point.

Following [23], we consider, as the performance measurement, the total number of propagations,
which, in this instance, corresponds to the number of oracle calls of function and Hessian-vector
product. Note that, due to the particular structure of fi in (50) and its gradient and Hessian,

once that fi, in particular e−bia
T
i x, has been computed the evaluation of ∇fi and ∇2fi comes for

free. Moreover, the evaluation of Hessian-vector product, which is required for each iteration of
Barzilai–Borwein gradient method, corresponds to two gradient evaluations. Table 2 describes,
taking into account the possibility of partial evaluations of function and Hessian, the total number
of propagations per iterations for each algorithm considered in this section.

16

Table 2: Total number of propagations per iterations for each algorithm, where j denotes the number
of Barzilai–Borwein iterations for solving the corresponding cubic subproblems.

subsampled-CRM full-CRM subsampled-ARC

(|Gt|+ 2|Ht|j)/d 1 + 2j 1 + 2|Ht|j/d

Figure 1 shows a comparison among the three algorithms in terms of the function values versus
the total number of propagations. As can be seen, the subsampled-CRM clearly outperforms the
full-CRM in all datasets, demonstrating the advantages of using subsampling techniques. Moreover,
the subsampled-CRM is more efficient than subsampled-ARC mainly due to the fact that it also uses
subsampled approach to evaluate the function f in (50) as well as its gradient.

4 Final remarks

We proposed a subsampled cubic regularization method for solving finite-sum optimization problems.
Under suitable hypotheses, we proved that the proposed algorithm needs at most O

(
ε−3/2

)
(resp.

O(max{ε−
3
2

g , ε−3
g })) calls of the oracle to generate an ε-approximate first-order (resp. an (εg, εH)-

approximate second-order) stationary point of the objective function. Global convergence properties
for finding approximate first- and second-order stationary points were also established. We further
proved a quadratic convergence result for the method. Finally, numerical experiments were presented,
illustrating the advantages of using subsampling techniques.

References

[1] J. Barzilai and J. M. Borwein, Two-Point Step Size Gradient Methods, IMA J. Numer. Anal. 8
(1988), no. 1, 141–148.

[2] S. Bellavia and Gurioli. G, Stochastic analysis of an adaptive cubic regularization method under
inexact gradient evaluations and dynamic hessian accuracy, Optimization 71 (2022), no. 1,
227–261.

[3] S. Bellavia, G. Gurioli, and B. Morini, Adaptive cubic regularization methods with dynamic
inexact Hessian information and applications to finite-sum minimization, IMA J. Numer. Anal.
41 (2020), no. 1, 764–799.

[4] S. Bellavia, G. Gurioli, B. Morini, and P. L. Toint, Quadratic and cubic regularisation meth-
ods with inexact function and random derivatives for finite-sum minimisation, Available on
https://doi.org/10.48550/arXiv.2104.00592.

[5] S. Bellavia, N. Krejić, and N. K. Jerinkić, Subsampled inexact Newton methods for minimizing
large sums of convex functions, IMA J. Numer. Anal. 40 (2019), no. 4, 2309–2341.

[6] S. Bellavia, N. Krejić, and B. Morini, Inexact restoration with subsampled trust-region methods
for finite-sum minimizations, Comput. Optim. Appl. 76 (2020), no. 2, 701–736.

17

Cina0 Gisette

0 5 10 15 20 25 30 35 40 45 50

of Props

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(
x k)

subsampled-CRM
full-CRM
subsampled-ARC

0 5 10 15 20 25 30 35 40 45

of Props

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(
x k)

subsampled-CRM
full-CRM
subsampled-ARC

Madelon Secom

0 5 10 15 20 25 30 35 40 45 50

of Props

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(
x k)

subsampled-CRM
full-CRM
subsampled-ARC

0 5 10 15 20 25 30 35 40 45 50

of Props

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(
x k)

subsampled-CRM
full-CRM
subsampled-ARC

Figure 1: Comparison of subsampled-CRM, full-CRM and subsampled-ARC in terms of the function
value versus the total number of propagations.

18

[7] E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos, and Ph. L. Toint, Worst-case eval-
uation complexity for unconstrained nonlinear optimization using high-order regularized models,
Math. Program. 163 (2017), no. 1, 359–368.

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the complexity of steepest descent, Newton’s
and regularized newton’s methods for nonconvex unconstrained optimization problems, SIAM J.
Optim. 20 (2010), no. 6, 2833–2852.

[9] X. Chen, B. Jiang, T. Lin, and S. Zhang, Accelerating adaptive cubic regularization of Newton’s
method via random sampling, J. Mach. Learn. Res. 23 (2022), no. 90, 1–38.

[10] J. W. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, 1997.

[11] D. di Serafino, N. Krejić, N. K. Jerinkić, and M. Viola, LSOS: Line-search
second-order stochastic optimization methods for nonconvex finite sums, Available on
https://doi.org/10.48550/arXiv.2007.15966.

[12] D. Dua and C. Graff, UCI machine learning repository. http://archive.ics.uci.edu/ml, 2017.

[13] G. N. Grapiglia and E.W. Sachs, A generalized worst-case complexity analysis for non-monotone
line searches, Numer. Algorithms 87 (2021), no. 2, 779–796.

[14] G.N. Grapiglia, M.L.N. Gonçalves, and G.N. Silva, A cubic regularization of Newton’s method
with finite difference hessian approximations, Numer. Algorithms 90 (2022), 607–630.

[15] A Griewank, The modification of Newton method for unconstrained optimization by bounding
cubic terms., Technical Report NA/12, Department of Applied Mathematics and Theoretical
Physics. University of Cambridge, Cambridge (1981).

[16] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton’s
method, SIAM J. Numer. Anal. 23 (1986), no. 4, 707–716.

[17] J. Kohler and A. Lucchi, Sub-sampled cubic regularization for non-convex optimization, In Pro-
ceedings of the 34th International Conference on Machine Learning (ICML 2017), vol. 70, 2017,
pp. 1895 – 1904.

[18] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global performance,
Math. Program. 184 (2006), no. 1, 177–205.

[19] S. Park, S. H. Jung, and P. M. Pardalos, Combining stochastic adaptive cubic regularization
with negative curvature for nonconvex optimization, J. Optim. Theory Appl. 184 (2020), no. 3,
953–971.

[20] B. Stefania, N. K. Jerinkić, and G. Malaspina, Subsampled nonmonotone spectral gradient meth-
ods, Commun. Appl. Ind. Math. 11 (2020), no. 1, 19–34.

[21] Causality Workbench Team, A marketing dataset. Available at
http://www.causality.inf.ethz.ch/data/CINA.html, 2008.

[22] Z. Wang, Y. Zhou, Y. Liang, and G. Lan, Cubic regularization with momentum for nonconvex
optimization, Available on https://doi.org/10.48550/arXiv.1810.03763.

19

[23] P. Xu, F. Roosta, and M. W. Mahoney, Second-order optimization for non-convex machine learn-
ing: an empirical study, pp. 199–207, in Proceedings of the 2020 SIAM International Conference
on Data Mining (SDM), SIAM, 2020.

20

