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Abstract

This paper proposes and analyzes an inexact variant of the proximal generalized alternating
direction method of multipliers (ADMM) for solving separable linearly constrained convex opti-
mization problems. In this variant, the first subproblem is approximately solved using a relative
error condition whereas the second one is assumed to be easy to solve. It is important to men-
tion that in many ADMM applications one of the subproblems has a closed-form solution; for
instance, `1 regularized convex composite optimization problems. The proposed method possesses
iteration-complexity bounds similar to its exact version. More specifically, it is shown that, for
a given tolerance ρ > 0, an approximate solution of the Lagrangian system associated to the
problem under consideration is obtained in at most O(1/ρ2) (resp. O(1/ρ) in the ergodic case)
iterations. Numerical experiments are presented to illustrate the performance of the proposed
scheme.
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1 Introduction

Recently, there has been a growing interest in the study of the alternating direction method of
multipliers (ADMM) and its variants for solving the separable linearly constrained optimization
problem

min{f(x) + g(y) : Ax+By = b}, (1)

where f : Rn → R and g : Rp → R are convex functions, A ∈ Rm×n, B ∈ Rm×p, and b ∈ Rm.
The ADMM is an augmented Lagrangian type method that explores the separable structure of
problem (1) in such a way that the augmented Lagrangian subproblem is solved alternately. The
first ones to consider this scheme were Glowinski and Marroco in [17] and Gabay and Mercier in
[16]. An important class of problems that can be fit into the above setting is the following composite
convex optimization problem

min
x∈Rn

f(x) + g(Qx), (2)
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where Q ∈ Rn×n. Indeed, this can be done by considering an artificial variable y = Qx and setting
A = −Q, B = I, and b = 0. A special instance of (2) consists of Q = I and g as the l1 regularization
g(·) = µ‖ · ‖1, where µ is a regularization parameter. The latter instance with f(x) = ‖Dx − d‖2,
where D ∈ Rm×n, corresponds to the popular LASSO problem. Problems such as (2) and, more
generally, (1) have found many applications in different areas; see, for example, [7] and references
therein for a throughout discussion on these problems as well as the use of the ADMM and some
variants to solve them.

In [11], Eckstein and Bertsekas proposed the following generalized ADMM (for short G-ADMM)
for solving (2): let (y0, γ0) ∈ Rp × Rm, β > 0 and α ∈ (0, 2) be given and consider two summable
sequences {µk} ⊂ R+ and {νk} ⊂ R+; for k = 1, 2, . . . do

xk ≈ arg min
x∈Rn

{
f(x)− 〈γk−1, yk−1 −Qx〉+

β

2
‖yk−1 −Qx‖2

}
, (3)

yk ≈ arg min
y∈Rp

{
g(y)− 〈γk−1, y −Qxk〉+

β

2
‖α(y −Qxk) + (1− α)(y − yk−1)‖2

}
, (4)

γk = γk−1 − β [α(yk −Qxk) + (1− α)(yk − yk−1)] , (5)

where the approximate solutions xk and yk are such that ‖xk − xek‖ ≤ µk and ‖yk − yek‖ ≤ νk, with
xek and yek being the exact solutions of (3) and (4), respectively. More recently (see [1, 8, 15]), several
authors have studied the following proximal version of the exact G-ADMM (µk = νk = 0) to solve (1):

xk ∈ arg min
x∈Rn

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2 +

1

2
‖x− xk−1‖2G

}
, (6)

yk ∈ arg min
y∈Rp

{
g(y)− 〈γk−1, By〉+

β

2
‖α(Axk +By − b) + (1− α)B(y − yk−1)‖2 +

1

2
‖y − yk−1‖2H

}
,

(7)

γk = γk−1 − β [α(Axk +Byk − b) + (1− α)B(yk − yk−1)] , (8)

where G and H are symmetric positive semidefinite matrices, and ‖ · ‖2G := 〈G·, ·〉, etc. In particular,
iteration-complexity bounds have been established in [1, 15] under different assumptions. Note that
the standard ADMM corresponds to the above method with (G,H) = (0, 0) and α = 1. As has been
observed by many authors (see, e.g., [1, 6, 15, 23]), the use of the relaxation parameter α > 1 in
(7)–(8) may considerably improve the numerical performance of the method.

This paper proposes and analyzes an inexact variant of the proximal G-ADMM (6)–(8) for solv-
ing (1). The method is interesting in applications in which subproblem (7) is easy to solve whereas (6)
is not, being necessary therefore to use iterative methods to approximately solve it. The proposed
scheme allows inexact solutions of the following inclusion (derived from the first-order optimality
condition for (6) with G = I)

0 ∈ ∂f1(x)−A∗(γk−1 − β(Ax+Byk−1 − b)) + (x− xk−1)/β, (9)

such that a relative error condition is satisfied. The error condition used here is similar to the one
studied in [29, 30] in the context of a hybrid proximal extragradient method. It is shown that the new

1The ε-subdifferential of a convex function h : Rn → R is defined by

∂εh(x) := {u ∈ Rn : h(x̃) ≥ h(x) + 〈u, x̃− x〉 − ε, ∀ x̃ ∈ Rn} ∀x ∈ Rn.

When ε = 0, then ∂0h(x) is denoted by ∂h(x) and is called the subdifferential of f at x.
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inexact method possesses iteration-complexity bounds similar to its exact version. More specifically,
consider the Lagrangian system associated to (1)

0 ∈ ∂f(x)−A∗γ, 0 ∈ ∂g(y)−B∗γ, 0 = Ax+By − b. (10)

We show that, for a given tolerance ρ > 0, an approximate solution (x̄, ȳ, γ̄) of (10) with residue
(vx̄, vȳ) ∈ Rm × Rp satisfying

vx̄ ∈ ∂f(x̄)−A∗γ̄, vȳ ∈ ∂g(ȳ)−B∗γ̄, max{‖Ax̄+Bȳ − b‖, ‖vx̄‖, ‖vȳ‖} ≤ ρ

is obtained in at most O(1/ρ2) iterations. We also show that, in the ergodic case, an approximate
solution (x̃, ỹ, γ̃) of (10) with residues (vx̃, vỹ) ∈ Rm × Rp and (εx̃, εỹ) ∈ R+ × R+ satisfying

vx̃ ∈ ∂εx̃f(x̃)−A∗γ̃, vỹ ∈ ∂εỹg(ỹ)−B∗γ̃, max{‖Ax̃+Bỹ − b‖, ‖vx̃‖, ‖vỹ‖, εx̃, εỹ} ≤ ρ

can be obtained in at most O(1/ρ) iterations. Some numerical experiments are presented in order
to illustrate the performance of the new method. In particular, it is verified that the use of the
relaxation parameter α > 1, specially α ≈ 1.9, improves considerably its numerical behavior.

Previous related works. Inexact versions of the ADMM and its variants considering absolute
and/or relative error conditions have been proposed in the literature; see, for instance, [2, 12, 13, 14,
33]. In [12], the authors proposed and analyzed an augmented Lagrangian method whose subproblem
is solved using a relative error condition similar to that proposed in [29] for a family of proximal point
type methods. The previous study was further developed in [13] to the ADMM setting in order to
solve (2). The latter reference also analyzed an ADMM whose subproblems are solved using absolute
error conditions. An inexact ADMM with relative error conditions similar to the one analyzed in [13]
was also studied in [33] for solving (1). Paper [14] proposed a relaxed Douglas–Rachford splitting
method for solving (2) and derived, as a consequence, a variant of the ADMM which uses, in a
special way, a relative error condition. Finally, [2] studied a partially inexact ADMM whose first
subproblem is approximately solved using a relative error condition similar to the one considered
here. The main difference between the study in [2] and the one presented in this paper is that the
ADMM variants analyzed are different. Specifically, [2] considered an ADMM which contains the
usually called Glowinski’s stepsize parameter in the update rule of the Lagrangian multiplier whereas
here we are considering the ADMM variant proposed by Eckstein and Bertsekas in [11]. Finally, in
the aforementioned papers only [2] presented an iteration-complexity analysis of the method. Their
iteration-complexity bounds are similar to the ones derived in this paper.

Organization of the paper. Section 2 introduces and analyzes the inexact proximal G-ADMM.
Section 3 is devoted to the numerical study of the proposed method. This section is divided into
two subsections. The first one illustrates the performance of the method for solving the LASSO
problem whereas the second subsection is devoted to the l1-regularized logistic regression problem.
A conclusion is presented in Section 4. The appendix contains the proof of an essential result related
to the proposed method.

2 Inexact proximal G-ADMM

In this section, we formally state the inexact proximal G-ADMM for computing approximate solutions
of (1) and present some properties as well as its pointwise and ergodic iteration-complexity bounds.

We start by describing the method.
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Algorithm 1 (Inexact proximal G-ADMM)

Input: (x0, y0, γ0) ∈ Rn×Rp×Rm, β > 0, τ1, τ2 ∈ [0, 1), α ∈ (0, 2− τ1), and a symmetric positive
semidefinite matrix H ∈ Rp×p;
for k = 1, 2, . . . do

1: compute (x̃k, vk) ∈ Rn × Rn such that

vk ∈ ∂f(x̃k)−A∗γ̃k, ‖x̃k − xk−1 + βvk‖2 ≤ τ1 ‖γ̃k − γk−1‖2 + τ2 ‖x̃k − xk−1‖2 , (11)

where
γ̃k = γk−1 − β(Ax̃k +Byk−1 − b); (12)

2: compute an optimal solution yk ∈ Rp of the subproblem

min
y∈Rp

{
g(y)− 〈γk−1, By〉+

β

2
‖α(Ax̃k +By − b) + (1− α)B(y − yk−1)‖2 +

1

2
‖y − yk−1‖2H

}
; (13)

3: set

xk = xk−1 − βvk, γk = γk−1 − β [α(Ax̃k +Byk − b) + (1− α)B(yk − yk−1)] . (14)

Some comments about Algorithm 1 are in order. First, if τ1 = τ2 = 0, then the inequality in
(11), combined with the first relation in (14), implies that x̃k = xk and vk = (xk−1 − xk)/β. Hence,
in view of the definition of γ̃k in (12) and the inclusion in (11), we conclude that xk is a solution of
(9). Therefore, Algorithm 1 can be seen as a variant of the proximal G-ADMM (6)–(8) in which its
first subproblem is approximately solved using a relative error condition. Now, if xk is a solution of
the inclusion in (9), then the pair (x̃k, vk) := (xk, (xk−1− xk)/β) trivially satisfies (11). Second, it is
assumed that (13) can be easily solved. On the one hand, if the matrix B in (1) is not the identity,
then subproblem (13) with the usual choice H := ξI−βB∗B with ξ ≥ β‖B∗B‖ (the symbol ∗ stands
for the transpose of a matrix) becomes a prox-subproblem

yk = arg min
y∈Rp

{
g(y) +

ξ

2
‖y − ŷ‖2

}
(15)

for some ŷ ∈ Rp. In many ADMM applications, g is well-structured (e.g., the l1-norm) and hence
the latter problem is easy to solve or even has a closed-form solution. On the other hand, if B = I
in (1), then H = 0 seems to be a natural choice.

In order to establish iteration-complexity bounds for Algorithm 1, we consider the following basic
assumption:

Assumption 1. There exists a solution (x∗, y∗, γ∗) ∈ Rn × Rp × Rm of the Lagrangian system
associated (10).

The set of points satisfying (10) is denoted by Ω∗. It is well-known that (x∗, y∗, γ∗) ∈ Ω∗ if and
only if (x∗, y∗) is a solution to problem (1) and γ∗ is an associated Lagrange multiplier. Let us also
consider a matrix M and an operator T defined as follows

M =


1
β In 0 0

0 (H + β
αB
∗B) 1−α

α B∗

0 1−α
α B 1

αβ Im

 , T (x, y, γ) =

 ∂f(x)−A∗γ
∂g(y)−B∗γ
Ax+By − b

 . (16)
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Remark 2.1. i) It can be easily verified that, for every β > 0 and α ∈ (0, 2), M is symmetric
positive semidefinite. ii) Since f and g are convex functions, the operators ∂f and ∂g are maximal
monotone (see [26]) which, in turn, implies that the operator T is also maximal monotone. iii) Note
that a triple (x∗, y∗, γ∗) is a solution of the Lagrangian system (10) if and only if 0 ∈ T (x∗, y∗, γ∗).

The following notion of approximate solutions of (10) will be considered:

Definition 2.2. Given a tolerance ρ > 0, a triple (x, y, γ) ∈ Rn × Rm × Rp is said to be a
ρ−approximate solution of (10) with residue r if

r ∈ T (x, y, γ), ‖r‖ ≤ ρ. (17)

In view of Remark 2.1(iii), for all ρ > 0, any element in Ω∗ is a ρ-approximate solution with
residue 0. For convenience, consider the sequences {zk} and {z̃k} defined by

zk−1 = (xk−1, yk−1, γk−1), z̃k = (x̃k, yk, γ̃k), ∀k ≥ 1. (18)

It will be shown that, for any given ρ > 0, there exists an index k such that z̃k is a ρ-approximate
solution of (10) with residue rk := M(zk−1 − zk). To this end, let us now introduce the following
quantities

d0 := inf {‖(x− x0, y − y0, γ − γ0)‖M : (x, y, γ) ∈ Ω∗} , (19)

σ := max

{
1 + ατ1

1 + α(2− α)
, τ2

}
and ξ :=

1

α3
[σ(1 + α− α2) + (1− τ1)α− 1]. (20)

Note that, if M is positive definite, then the quantity d0 measures the distance in the norm ‖ · ‖M
of the initial point (x0, y0, γ0) to the solution set Ω∗. Furthermore, in view of the assumptions on α,
τ1 and τ2 in Algorithm 1, we trivially have σ ∈ (0, 1) and ξ > 0.

The next result, whose proof is presented in Appendix A, shows some important relations satisfied
by the sequences {zk} and {z̃k}.

Proposition 2.3. Let {zk} and {z̃k} be as in (18). Consider {ηk}k≥0 defined by

η0 = 4ξd2
0, ηk = ξ‖yk − yk−1‖2H , ∀k ≥ 1, (21)

where d0 and ξ are as in (19) and (20), respectively. Let also M , T and σ be as in (16) and (20).
Then, the following hold:

a) for every k ≥ 1, we have

0 ∈ T (z̃k) +M (zk − zk−1) , ‖zk − z̃k‖2M + ηk ≤ σ‖zk−1 − z̃k‖2M + ηk−1; (22)

b) for every k ≥ 1 and z∗ := (x∗, y∗, γ∗) ∈ Ω∗, we have

‖zk − z∗‖2M ≤ ‖zk−1 − z∗‖2M + ηk−1 − ηk − (1− σ)‖zk−1 − z̃k‖2M .

Remark 2.4. i) Note that the inclusion in (22) can be interpreted as a generalized proximal inclusion
where the pair (zk, z̃k) is controlled according to the relative error condition in (22). Indeed, the
relations in (22) imply that the sequence {(zk, z̃k, ηk)}k≥1 is an implementation of the HPE framework
studied in [20]. As a consequence of the latter conclusion, the pointwise iteration-complexity bound
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in Theorem 2.5 can also be derived from [20, Theorem 3.3]. However, since its proof follows easily
from Proposition 2.3, we present it here for completeness and convenience of the reader. On the
other hand, although the ergodic iteration-complexity bound (see Theorem 2.6) is related to [20,
Theorem 3.4], its proof does not follow immediately from the latter theorem. ii) The inequality in
Proposition 2.3(b) is closely related to the well-known quasi-Fejér inequality which can be used to
show that {zk} converges to a point in Ω∗ when M is positive definite.

We next present the main results of this paper. The first one contains a pointwise iteration-
complexity bound for Algorithm 1 to obtain an approximate solution in the sense of Definition 2.2.
The second one derives an iteration-complexity bound to obtain a relaxed approximate solution
of (10).

Theorem 2.5. For a given tolerance ρ > 0, Algorithm 1 generates a ρ−approximate solution
(x̃i, yi, γ̃i) of (10) with an associated residue ri = M(zi−1 − zi) in at most O(d2

0/ρ
2) iterations,

where {zi} and d0 are as in (18) and (19), respectively.

Proof. First note that, in view of the inclusion in (22), we have rk := M(zk−1−zk) is a residue to the
inclusion in (17) associated to z̃k, for every k ≥ 1. Let λM be the largest eigenvalue of the matrix M
in (16). Hence, combining the definition of rk, the inequality in (22) and simple algebra, we obtain

‖rk‖2 ≤ λM‖zk−1 − zk‖2M ≤ 2λM
[
‖zk−1 − z̃k‖2M + ‖z̃k − zk‖2M

]
≤ 2λM

[
(σ + 1)‖zk−1 − z̃k‖2M + ηk−1 − ηk

]
, (23)

for every k ≥ 1. It follows from Proposition 2.3(b) and (23) that, for every z∗ := (x∗, y∗, γ∗) ∈ Ω∗,

i∑
k=1

‖rk‖2 ≤
2λM
1− σ

i∑
k=1

[
(σ + 1)

(
‖zk−1 − z∗‖2M − ‖zk − z∗‖2M

)
+ 2(ηk−1 − ηk)

]
≤ 2λM

1− σ
(
(σ + 1)‖z0 − z∗‖2M + 2η0

)
,

which in turn, in view of the definitions of d0 and η0 given in (19) and (21), implies that there exists
a scalar c > 0 such that

i∑
k=1

‖rk‖2 ≤ cd2
0. (24)

In particular, the latter inequality implies that {rk} converges to zero. Hence, let i be the first index
in which ‖ri‖ ≤ ρ (which is equivalent to say that z̃i is a ρ-approximate solution with residue ri).
Note that if i = 1, then the statement of the theorem trivially follows. Now assume that i > 1. It
follows from (24) that

(i− 1)ρ2 <

i−1∑
k=1

‖rk‖2 ≤ cd2
0

and hence i = O(d2
0/ρ

2), concluding the proof of the theorem.

Theorem 2.6. Let {(xk, yk, γk, x̃k, γ̃k)} be generated by Algorithm 1 and consider the sequences
{(xak, yak , γak , x̃ak, γ̃ak)} and {qak} defined by

(xak, y
a
k , γ

a
k , x̃

a
k, γ̃

a
k) =

1

k

k∑
i=1

(xi, yi, γi, x̃i, γ̃i) , qak =
1

k
[(x0, y0, γ0)− (xk, yk, γk)] . (25)
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Then, for every k ≥ 1, there exist εak,x, ε
a
k,y ≥ 0 such that the following relations hold

rak := Mqak ∈
(
∂εak,xf(x̃ak)−A∗γ̃ak , ∂εak,yg(yak)−B∗γ̃ak , Ax̃ak +Byak − b

)
(26)

‖rak‖ ≤
θd0

k
, max{εak,x, εak,y} ≤

θd2
0

k
, (27)

where M and d0 are as in (16) and (19), respectively, and θ is a positive scalar depending on (α, τ1, τ2)
and the largest eigenvalue of M .

Proof. First of all, define (vi, ui, wi) = M(zi−1 − zi) for every i ≥ 1. Hence, it follows from Proposi-
tion 2.3(a) and (16) that

vi +A∗γ̃i ∈ ∂f(x̃i), ui +B∗γ̃i ∈ ∂g(yi), wi = Ax̃i +Byi − b. (28)

On the one hand, from the above equality and (25), we have

wak :=
1

k

k∑
i=1

wi = Ax̃ak +Byak − b. (29)

Now, in view of the inclusions in (28), it follows from (25) and [19, Theorem 2.1] that the sequences
{εak,x} and {εak,y} defined by

εak,x :=
1

k

k∑
i=1

〈vi +A∗γ̃i, x̃i − x̃ak〉 , εak,y :=
1

k

k∑
i=1

〈ui +B∗γ̃i, yi − yak〉 , (30)

are nonnegative and

1

k

k∑
i=1

vi ∈ ∂εak,xf(x̃ak)−A∗γ̃ak ,
1

k

k∑
i=1

ui ∈ ∂εak,yg(yak)−B∗γ̃ak . (31)

The inclusion in (26) follows from (29) and (31) and the fact that
∑k

i=1(vi, ui, wi) = M(z0 − zk).
Therefore, the proof of the existence of the elements εak,x, ε

a
k,y ≥ 0 such that (26) holds is completed.

Let us now prove that (27) holds for rak, εak,x and εak,y as defined above. Using (18) and the
definition of qak in (25), we have

kqak = z0 − zk = (z0 − z∗) + (z∗ − zk),

where z∗ = (x∗, y∗, γ∗) ∈ Ω∗. Thus, from Proposition 2.3(b), we obtain

k2‖qak‖2M ≤ 2(‖z∗ − z0‖2M + ‖z∗ − zk‖2M ) ≤ 4(‖z∗ − z0‖2M + η0). (32)

Since rak = Mqak , we obtain ‖rak‖2 ≤ λM‖qak‖2M , where λM is the largest eigenvalue of M . Hence,
using (32) and the definitions of d0 and η0 in (19) and (21), respectively, we conclude that the bound
on ‖rak‖ in (27) holds with θ = θ1 := 2

√
λM (1 + 4ξ).
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Now, from (30), we have

εak,x + εak,y =
1

k

k∑
i=1

(
〈vi, x̃i − x̃ak〉+ 〈ui, yi − yak〉+ 〈γ̃i, Ax̃i −Ax̃ak +Byi −Byak〉

)
=

1

k

k∑
i=1

(
〈vi, x̃i − x̃ak〉+ 〈ui, yi − yak〉+ 〈γ̃i, wi − wak〉

)
,

where the last equality is due to the definitions of wi and wak in (28) and (29), respectively. Addi-
tionally, the definitions of wi, w

a
k and γ̃ak imply that

1

k

k∑
i=1

〈γ̃i, wi − wak〉 =
1

k

k∑
i=1

〈γ̃i − γ̃ak , wi − wak〉 =
1

k

k∑
i=1

〈wi, γ̃i − γ̃ak〉.

Therefore, since zi = (xi, yi, γi) and M(zi−1 − zi) = (vi, ui, wi), we obtain

εak,x + εak,y =
1

k

k∑
i=1

〈M(zi−1 − zi), z̃i − z̃ak〉 , (33)

where z̃ak := (x̃ak, y
a
k , γ̃

a
k). On the other hand, observe that for every z ∈ Rn+m+p, we have

‖z − zi‖2M − ‖z − zi−1‖2M = ‖z̃i − zi‖2M − ‖z̃i − zi−1‖2M + 2 〈M(zi−1 − zi), z − z̃i〉
≤ (σ − 1) ‖z̃i − zi−1‖2M + ηi−1 − ηi + 2 〈M(zi−1 − zi), z − z̃i〉

where the last inequality is due to (22). Thus, since σ < 1 (see (20)), we find

k∑
i=1

2 〈M(zi−1 − zi), z̃i − z〉 ≤ ‖z − z0‖2M − ‖z − zk‖
2
M + η0 − ηk ≤ ‖z − z0‖2M + η0.

Letting z = z̃ak in the above inequality and using (33), we obtain

2k(εak,x + εak,y) ≤ ‖z̃ak − z0‖2M + η0 ≤
1

k

k∑
i=1

‖z̃i − z0‖2M + η0,≤ max
i=1,...,k

‖z̃i − z0‖2M + η0, (34)

where the second inequality is due to the definition of z̃ak and the convexity of the function ‖ · ‖2M .
Now, since ‖z+ z′+ z′′‖2M ≤ 3

(
‖z‖2M + ‖z′‖2M + ‖z′′‖2M

)
for all z, z′, z′′, we have, for every i ≥ 1 and

z∗ ∈ Ω∗,

‖z̃i − z0‖2M ≤ 3
[
‖z̃i − zi‖2M + ‖z∗ − zi‖2M + ‖z∗ − z0‖2M

]
≤ 3

[
σ ‖z̃i − zi−1‖2M + ηi−1 + ‖z∗ − zi‖2M + ‖z∗ − z0‖2M

]
,

where the last inequality is due to (22). Hence, using Proposition 2.3(b), we obtain

‖z̃i − z0‖2M ≤ 3
[
σ ‖z̃i − zi−1‖2M + ηi−1 + ‖z∗ − zi−1‖2M + ηi−1 + ‖z∗ − z0‖2M

]
≤ 3

[
σ ‖z̃i − zi−1‖2M + 2(‖z∗ − zi−1‖2M + ηi−1) + ‖z∗ − z0‖2M

]
≤ 3

[
σ ‖z̃i − zi−1‖2M + 3 ‖z∗ − z0‖2M + 2η0

]
,
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which, combined with (34), yields

2k
(
εak,x + εak,y

)
≤ 3

[
3
(
‖z∗ − z0‖2M + η0

)
+ σ max

i=1,...,k
‖z̃i − zi−1‖2M

]
.

From Proposition 2.3(b), we also have

(1− σ) ‖z̃i − zi−1‖2M ≤ ‖z
∗ − zi−1‖2M + ηi−1 ≤ ‖z∗ − z0‖2M + η0.

Combining the previous inequalities, we obtain

εak,x + εak,y ≤
3(3− 2σ)

2(1− σ)k

(
‖z∗ − z0‖2M + η0

)
.

Hence, using the definitions of d0 and η0 in (19) and (21), respectively, we conclude that the second
inequality in (27) holds with θ = θ2 := 3(3− 2σ)(1 + 4ξ)/2(1− σ). Therefore, the estimations in
(27) trivially follow by defining θ = max{θ1, θ2}.

Remark 2.7. It follows from Theorem 2.6 that, for a given tolerance ρ > 0, in at most k =
O(max{d0, d

2
0}/ρ) iterations, the triple (x̃ak, y

a
k , γ̃

a
k), together with rak, satisfies the inclusion in (26)

with εak,x, ε
a
k,y ≥ 0 and max{‖rak‖, εak,x, εak,y} ≤ ρ. Hence, the triple (x̃ak, y

a
k , γ̃

a
k) can be seen as an

approximate solution of (10) with residue rak in the sense that the inclusions in (10) are relaxed by
using the ε-subdifferential operator instead of the subdifferential. It should be mentioned that the
quantities εak,x and εak,y can be explicitly computed (see (30)). Their expressions are not explicitly
stated in order to simplify the statement of the theorem.

In the next section, we present some numerical experiments to illustrate the performance of
Algorithm 1 under different choices of the relaxation parameter α.

3 Numerical experiments

This section reports the numerical performance of Algorithm 1 to solve two classes of problems,
namely, LASSO and l1–regularized logistic regression. Different values of the relaxation parameter
α were considered in order to illustrate its effect and show that, similarly to the exact G-ADMM, the
performance of the algorithm improves considerably when α >> 1, specially α ≈ 1.9. The proposed
algorithm was compared with two other schemes: the partially inexact ADMM [13, Algorithm 2]
and a generalized version of the “exact” ADMM considered in [11], denoted here as Algorithm 2.
The latter algorithm corresponds to the scheme (6)–(8) with (G,H) = (0, 0) and xk being such that
there exists a residue vk satisfying

vk ∈ ∂f(xk)−A∗ [γk−1 + β (Axk +Byk−1 − b)] , ‖vk‖ ≤ 10−8.

Note that the above inclusion with vk = 0 is the one derived from the first-order optimality condition
for (6) with G = 0. It should be mentioned that the applications considered here are such that the
solution of the second subproblem of the three analyzed algorithms can be explicitly computed.

The algorithms were tested using six non-simulated data sets from the Elvira biomedical reposi-
tory [9]. Each one of them is represented by a matrix D ∈ Rm×n and a vector d ∈ Rm as follows:

1. Colon tumor gene expression [3] with m = 62 and n = 2000;
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2. Central nervous system (CNS) data [25] with m = 60 and n = 7129;

3. Leukemia cancer-ALLMLL data [18] with m = 38 and n = 7129;

4. Lung cancer-Michigan data [5] with m = 96 and n = 7129;

5. Lymphoma-Harvard data [27] with m = 77 and n = 7129;

6. Prostate cancer data [28] with m = 102 and n = 12600.

In addition, for the second class of problems, we also selected the Madelon data set (see [21]) from
the ICU Machine Learning Repository [10], which has dimensions m = 2000 and n = 500. All
experiments were performed on MATLAB R2015a using an Intel(R) Core i7 2.4GHz computer with
8GB of RAM.

For all tests, we set (x0, y0, γ0) = (0, 0, 0) and β = 1, and used the same overall termination
condition

‖M(zk−1 − zk)‖∞ ≤ 10−4, (35)

where M and zk are as in (16) and (18), respectively. In Algorithm 1, the remaining initialization
data were τ1 = 0.99 × (2 − α), τ2 = 1 − 10−8 and H = 0, and a hybrid inner stopping criterion
was used; specifically, the inner-loop terminates when vk satisfies either the inequality in (11) or
‖vk‖ ≤ 10−8. The latter strategy was also used in [13, 14, 33] and it is motivated by the fact that,
close to a solution, the former condition seems to be more restrictive than the latter. We mention
that the performance of the partially inexact ADMM [13, Algorithm 2] was basically the same as
the one of Algorithm 1 with α = 1, and hence only the results of the latter scheme are displayed in
the tables.

3.1 LASSO problem

Our first test problem is the LASSO [31, 32]

min
x∈Rn

1

2
‖Dx− d‖2 + µ‖x‖1,

where D ∈ Rm×n, d ∈ Rm, and µ > 0 is a regularization parameter. In our experiment, the matrix
D and the vector d were set as listed in the beginning of this section. Moreover, we scaled d and
the columns of D in order to have unit l2-norm, and set µ = 0.1‖D∗d‖∞. It is easy to see that the
above problem can be rewritten as an instance of (1) in which f(x) = 1

2‖Dx − d‖
2, g(y) = µ‖y‖1,

A = −I, B = I and b = 0. In this case, the pair (x̃k, vk) in (11) can be obtained by computing an
approximate solution x̃k with a residual vk of the following linear system

(D∗D + βI)x = (D∗d+ βyk−1 − γk−1).

For approximately solving the above linear system, we used the conjugate gradient method [24] with
starting point D∗d+ βyk−1 − γk−1. Note also that subproblem (13) has a closed-form solution

yk = Sµ
β

(
αx̃k + (1− α)yk−1 +

1

β
γk−1

)
,

where Sκ : Rn → Rn is the shrinkage operator [4] defined as

Siκ(w) = sign(wi) max(0, |wi| − κ) i = 1, 2, . . . , n, (36)
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Table 1: LASSO problem

α = 1.0 α = 1.3 α = 1.5 α = 1.7 α = 1.9

Data set Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Number of outer iterations

Colon 116 114 88 89 78 77 69 69 63 63

CNS 319 321 248 249 217 217 194 194 182 182

Leukemia 600 600 431 431 370 370 329 330 320 320

Lung 535 535 412 412 357 357 315 315 282 282

Lymphoma 331 331 255 255 222 222 196 196 176 176

Prostate 431 430 331 331 287 287 254 254 227 227

Total number of inner iterations

Colon 2136 4656 1607 3639 1450 3149 1308 2822 1216 2576

CNS 10060 16064 7818 12466 6871 10862 6203 9712 6024 9108

Leukemia 11351 17365 8033 12478 6909 10715 6196 9556 6195 9263

Lung 12516 22836 9622 17588 8373 15240 7475 13451 6881 12048

Lymphoma 8619 15182 6522 11703 5850 10180 5208 8998 4796 8072

Prostate 19562 35002 15083 26944 13088 23374 11906 20700 11003 18478

CPU time in seconds

Colon 16.4 23.3 12.3 18.2 10.9 17.0 9.7 14.4 9.2 13.1

CNS 754.4 944.4 584.6 743.4 515.6 643.1 472.9 576.7 449.0 538.7

Leukemia 1119.2 1290.4 789.0 927.8 679.4 797.0 606.1 710.5 600.4 689.4

Lung 1114.7 1470.9 872.3 1159.5 762.5 998.5 670.9 880.5 607.6 788.8

Lymphoma 769.7 931.0 601.8 728.1 489.0 634.6 433.3 564.1 393.1 504.1

Prostate 4325.1 5926.5 3509.2 4494.2 3083.7 3900.2 2664.4 3438.1 2343.7 3103.0

and sign(·) denotes the sign function.
Table 1 displays the numerical results obtained. In order to compare the algorithms, we consider

the number of outer iterations, the total number of accumulated inner iterations and the CPU time
in seconds. In Figure 1, we plot the arithmetic mean of the latter three comparisons criteria for
each algorithm for solving the six LASSO problem instances. From these results, one can see that
the number of outer iterations of Algorithm 1 and Algorithm 2 are basically the same for every
considered relaxation parameter α. In particular, the numerical advantage of using α > 1, specially
α ≈ 1.9, is also verified for Algorithm 1. Algorithm 1 performed at least 33% less inner iterations
than Algorithm 2, reaching, in some instances, 50% less inner iterations. Note that this performance
improvement also reflected favorably in terms of CPU time.
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Figure 1: Arithmetic mean of the LASSO problem results

3.2 l1-Regularized logistic regression problem

In this subsection, we consider the l1-regularized logistic regression problem [22]

min
t∈R,u∈Rn

1

m

m∑
i=1

log
(

1 + exp
(
− di(〈Di, u〉+ t)

))
+ µ ‖u‖1 , (37)

where Di ∈ Rn are the rows of a matrix D ∈ Rm×n, di ∈ {−1,+1} are the coordinates of a vector
d ∈ Rm and µ is a regularization parameter. In our experiment, the matrix D and the vector d were
chosen as described in the beginning of this section. We scaled the columns of D in order to have
unit l2-norm and set µ = 0.5λmax, where λmax is as defined in [22, Subsection 2.1]. By defining
zi:j := (zi, . . . , zj) ∈ Rj−i+1, problem (37) can be rewritten as an instance of (1) in which

f(x) =
1

m

m∑
i=1

log
(

1 + exp
(
− di(〈Di, x

2:n+1〉+ x1)
))
, g(y) = µ‖y2:n+1‖1,

A = −I, B = I, and b = 0.

In order to compute a pair (x̃k, vk) as in (11), we implemented the limited-memory BFGS method
[24, Algorithm 7.5] with starting point equal to (0, . . . , 0). Similarly to the previous subsection, (13)
has a closed-form solution yk := (y1

k, y
2:n+1
k ) given by

y1
k = αx̃1

k + (1− α)y1
k−1 +

1

β
γ1
k−1, y2:n+1

k = Sµ
β

(
αx̃2:n+1

k + (1− α)y2:n+1
k−1 +

1

β
γ2:n+1
k−1

)
,

where S is the shrinkage operator as defined in (36).
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Table 2: l1-regularized logistic regression problem

α = 1.0 α = 1.3 α = 1.5 α = 1.7 α = 1.9

Data set Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Number of outer iterations

Colon 370 337 253 259 216 224 196 197 175 176

CNS 278 278 216 213 186 185 163 163 144 145

Leukemia 625 624 481 480 416 416 367 367 328 328

Lung 551 513 435 400 375 347 378 380 548 528

Lymphoma 375 375 289 287 251 248 223 219 197 195

Prostate 882 879 678 676 585 585 512 516 457 462

Madelon 1935 1953 1480 1502 1269 1302 1105 1148 975 1027

Total number of inner iterations

Colon 9912 18645 7033 14460 5784 12334 5515 10949 4883 9688

CNS 8758 15515 6781 11881 5969 10259 5086 9068 4528 8077

Leukemia 15402 27859 11763 21486 10354 18560 8951 16271 7925 14538

Lung 15744 28487 13005 22329 10642 18813 10559 20320 16208 28931

Lymphoma 11191 21638 8666 16485 7443 14248 6546 12590 5826 11228

Prostate 37327 68770 28419 52865 24842 45705 22902 40480 21267 36160

Madelon 19857 38698 14859 29584 11898 25871 9806 22601 8159 20371

CPU time in seconds

Colon 21.8 48.3 13.5 37.4 10.3 31.8 9.8 28.3 8.7 24.7

CNS 107.9 302.0 88.9 232.2 79.0 199.0 68.9 177.4 61.5 159.2

Leukemia 168.6 417.1 131.8 337.4 110.1 279.7 93.4 243.0 91.4 215.8

Lung 352.2 844.1 292.5 638.4 239.8 539.1 242.9 572.5 363.7 822.8

Lymphoma 190.0 527.5 156.3 402.5 134.3 351.9 121.8 308.7 108.1 276.0

Prostate 1246.5 3844.6 918.9 2950.4 807.8 2562.0 761.8 2271.1 782.1 2036.8

Madelon 817.6 1589.2 605.6 1205.2 461.3 1065.1 390.6 887.6 332.2 809.4

Table 2 displays the numerical results obtained. As in Subsection 3.1, the methods were compared
in terms of the number of outer iterations, the total number of inner iterations and the CPU time
in seconds. In Figure 2, we plot the arithmetic mean of the latter three comparison criteria for
each method for solving the seven l1-regularized logistic regression problem instances. By analyzing
Table 2 and Figure 2, one can see that Algorithm 1 performed, basically, the same number of outer
iterations than Algorithm 2. Regarding the total number of inner iterations, Algorithm 1 performed
at least 41% less than Algorithm 2, reaching, in some instances, 60% less inner iterations. Note that
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the saving with respect to CPU times was very expressive. Specifically, Algorithm 1 was at least 48%
faster than Algorithm 2. The reason lies in the difficulty to solve (6) for the l1-regularized logistic
regression problem.
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Figure 2: Arithmetic mean of the l1-regularized logistic regression problem results

4 Conclusions

This paper proposed and analyzed an inexact proximal generalized ADMM for computing approx-
imate solutions of linearly constrained convex optimization problems. The proposed method is a
variant of the generalized ADMM proposed by Bertsekas and Eckstein in [11]. It basically consists of
approximately solving a prox-inclusion associated to the first generalized ADMM subproblem using
a relative error condition. The second generalized ADMM subproblem is regularized by a proximal
term and assumed to be easy to solve. It was shown that the proposed inexact method has pointwise
and ergodic iteration-complexity bounds similar to its exact version. Some numerical experiments
were carried out in order to illustrate the numerical behavior of the method. They indicate that
the proposed scheme represents an useful tool for solving some real-life applications that can be
formulated as linearly constrained convex optimization problems.

A Proof of Proposition 2.3

We start by showing that the inclusion in Proposition 2.3(a) holds. First, it follows from the defini-
tions of γ̃k and γk as in (12) and (14), respectively, that

γ̃k − γk−1 =
β

α
B(yk − yk−1) +

1

α
(γk − γk−1) , ∀k ≥ 1. (38)
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Proof of the inclusion in Proposition 2.3(a): From the inclusion in (11) and the first relation
in (14), we have

1

β
(xk−1 − xk) = vk ∈ ∂f(x̃k)−A∗γ̃k. (39)

Now, the first-order optimality condition for (13) and the definition of γk in (14) imply that

0 ∈ ∂g(yk)−B∗γk +H(yk − yk−1). (40)

On the other hand, it follows from (38) that

γk = γ̃k −
1− α
α

(γk − γk−1)− β

α
B(yk − yk−1),

which, combined with (40), yields

(H +
β

α
B∗B) (yk−1 − yk) +

1− α
α

B∗ (γk−1 − γk) ∈ ∂g(yk)−B∗γ̃k. (41)

From the second equality in (14), we obtain

1− α
α

B (yk−1 − yk) +
1

αβ
(γk−1 − γk) = Ax̃k +Byk − b. (42)

Therefore, the desired inclusion now follows by combining (39), (41), (42) and the definitions of M
and T in (16).

In order to prove the remaining statements of Proposition 2.3, we need to establish two technical
results. Note first that the relation in (38) implies that

‖γ̃k − γk−1‖2 =
β

α2
‖(yk − yk−1, γk − γk−1)‖2S , where S =

[
βB∗B B∗

B 1
β I

]
. (43)

For simplicity, we also consider the following symmetric matrices

N =

[
[1 + α(2− α)]βB∗B (1 + α− α2)B∗

(1 + α− α2)B 1
β I

]
, P =

 βB∗B (1− α)B∗

(1− α)B (1−α)2

β I

 . (44)

It is easy to verify that S, N and P are positive semidefinite for every β > 0 and α ∈ (0, 2).

Lemma A.1. Let {zk} and {z̃k} be as in (18). Then, for every k ≥ 1, the following hold:

‖z̃k − zk−1‖2M ≥
1

β
‖x̃k − xk−1‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2N (45)

and

‖z̃k − zk‖2M =
1

β
‖x̃k − xk‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2P , (46)

where the matrices M , N and P are as in (16) and (44).
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Proof. Using the fact that z̃k − zk−1 = (x̃k − xk−1, yk − yk−1, γ̃k − γk−1) and the definition of M in
(16), we obtain

‖z̃k − zk−1‖2M =
1

β
‖x̃k − xk−1‖2 + ‖yk − yk−1‖2H +

β

α
‖B(yk − yk−1)‖2

+
2(1− α)

α
〈B(yk − yk−1), γ̃k − γk−1〉+

1

αβ
‖γ̃k − γk−1‖2.

On the other hand, equality (38) implies that

〈B(yk − yk−1), γ̃k − γk−1〉 =
β

α
‖B(yk − yk−1)‖2 +

1

α
〈B(yk − yk−1), γk − γk−1〉,

and

‖γ̃k − γk−1‖2 =
β2

α2
‖B(yk − yk−1)‖2 +

2β

α2
〈B(yk − yk−1), γk − γk−1〉+

1

α2
‖γk − γk−1‖2.

Combining the last three equalities, we find

‖z̃k − zk−1‖2M ≥
1

β
‖x̃k − xk−1‖2 +

(
1

α
+

2(1− α)

α2
+

1

α3

)
β‖B(yk − yk−1)‖2

+

(
2(1− α)

α2
+

2

α3

)
〈B(yk − yk−1), γk − γk−1〉+

1

α3β
‖γk − γk−1‖2.

Thus, (45) follows from the last equality and the definition of N in (44).
Let us now prove (46). Using z̃k − zk = (x̃k − xk, 0, γ̃k − γk) (see (18)) and the definition of M

in (16), we have

‖z̃k − zk‖2M =
1

β
‖x̃k − xk‖2 +

1

αβ
‖γ̃k − γk‖2.

It follows from (38) and some algebraic manipulations that

‖γ̃k − γk‖2 =
β2

α2
‖B(yk−yk−1)‖2+

2(1− α)β

α2
〈B(yk − yk−1), γk − γk−1〉+

(1− α)2

α2
‖γk − γk−1‖2 .

Therefore, the desired equality now follows by combining the last two equalities and the definition
of P in (44).

Lemma A.2. Let {(xk, yk, γk)} be generated by Algorithm 1. Then, the following hold:

(a) 2〈B(y1 − y0), γ1 − γ0〉 ≥ ‖y1 − y0‖2H − 4d2
0, where d0 is as in (19);

(b) 2〈B(yk − yk−1), γk − γk−1〉 ≥ ‖yk − yk−1‖2H − ‖yk−1 − yk−2‖2H , for every k ≥ 2.

Proof. (a) Consider z0, z1 and z̃1 as in (18), and let an arbitrary z∗ := (x∗, y∗, γ∗) ∈ Ω∗ (see As-
sumpiton 1). Note that, in view of the definition of d0 in (19), in order to establish (a), it is sufficient
to prove that

Θ := ‖y1 − y0‖2H − 2〈B(y1 − y0), γ1 − γ0〉 ≤ 4‖z∗ − z0‖2M , (47)
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where M is as in (16). Let us then show (47). From the definitions of M and {zk}, we have

‖z1 − z0‖2M =
1

β
‖x1 − x0‖2 + ‖y1 − y0‖2H+ β

α
B∗B

+
2(1− α)

α
〈B(y1 − y0), γ1 − γ0〉+

1

αβ
‖γ1 − γ0‖2

=
1

β
‖x1 − x0‖2 + Θ +

∥∥∥∥√β√αB(y1 − y0) +
1√
αβ

(γ1 − γ0)

∥∥∥∥2

.

Hence, we obtain

Θ ≤ ‖z1 − z0‖2M ≤ 2
(
‖z∗ − z1‖2M + ‖z∗ − z0‖2M

)
, (48)

where the last inequality is due to ‖z + z′‖2M ≤ 2
(
‖z‖2M + ‖z′‖2M

)
for all z, z′. We will now prove

that
‖z∗ − z1‖2M ≤ ‖z

∗ − z0‖2M . (49)

Since we have already proved that the inclusion in Proposition 2.3(a) holds, we have M(z0 − z1) ∈
T (z̃1) where M and T are as in (16). Thus, using that 0 ∈ T (z∗) and T is monotone, we obtain
〈M(z0 − z1), z∗ − z̃1〉 ≤ 0. Hence,

‖z∗ − z1‖2M − ‖z∗ − z0‖2M = ‖(z∗ − z̃1) + (z̃1 − z1)‖2M − ‖(z∗ − z̃1) + (z̃1 − z0)‖2M
= ‖z̃1 − z1‖2M + 2〈M(z0 − z1), z∗ − z̃1〉 − ‖z̃1 − z0‖2M
≤ ‖z̃1 − z1‖2M − ‖z̃1 − z0‖2M .

Using (46), the inequality in (11), and the first equality in (14) (all with k = 1), we have

‖z̃1 − z1‖2M ≤
τ1

β
‖γ̃1 − γ0‖2 +

τ2

β
‖x̃1 − x0‖2 +

1

α3
‖(y1 − y0, γ1 − γ0)‖2P ,

where P is as in (44). Now, (45) with k = 1 becomes

‖z̃1 − z0‖2M ≥
1

β
‖x̃1 − x0‖2 +

1

α3
‖(y1 − y0, γ1 − γ0)‖2N

where N is as in (44). Combining the last three inequalities and the fact that τ2 < 1 (see Algorithm
1), we find

‖z∗ − z1‖2M − ‖z
∗ − z0‖2M ≤

τ1

β
‖γ̃1 − γ0‖2 +

1

α3

(
‖(y1 − y0, γ1 − γ0)‖2P − ‖(y1 − y0, γ1 − γ0)‖2N

)
=
τ1

β
‖γ̃1 − γ0‖2 −

2− α
α2
‖(y1 − y0, γ1 − γ0)‖2S , (50)

where the last equality is due to the fact that P −N = −α(2− α)S, with S given in (43). The last
inequality, (43) with k = 1 and the fact that α ∈ (0, 2− τ1) yield

‖z∗ − z1‖2M − ‖z
∗ − z0‖2M ≤

α+ τ1 − 2

α2
‖(y1 − y0, γ1 − γ0)‖2S ≤ 0,

which implies that (49) holds. Therefore, (a) now follows by combining (48) and (49).
(b) From the first-order optimality condition for (13) and the second relation in (14), we obtain

B∗γj −H(yj − yj−1) ∈ ∂g(yj) ∀ j ≥ 1.
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Hence, for every k ≥ 2, using the above inclusion with j ← k and j ← k − 1 and the monotonicity
of ∂g , we have

〈B∗(γk − γk−1), yk − yk−1〉 ≥ ‖yk − yk−1‖2H − 〈H(yk−1 − yk−2), yk − yk−1〉

≥ 1

2
‖yk − yk−1‖2H −

1

2
‖yk−1 − yk−2‖2H ,

where the last inequality is due to the fact that 2 〈Hy, y′〉 ≤ ‖y‖2H + ‖y′‖2H for all y, y′. Therefore,
(b) follows trivially from the last inequality.

We are now ready to prove the remaining statements of Proposition 2.3.

Proof of the inequality in Proposition 2.3(a): Using (46) and the first relation in (14), we have

‖z̃k − zk‖2M =
1

β
‖x̃k − xk−1 + βvk‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2P

≤ τ1

β
‖γ̃k − γk−1‖2 +

τ2

β
‖x̃k − xk−1‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2P ,

where the inequality is due to the second condition in (11). It follows from the last inequality, (45)
and the fact that σ ≥ τ2 (see (20)) that

σ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M ≥ ak (51)

where

ak := −τ1

β
‖γ̃k − γk−1‖2 +

1

α3

(
σ ‖(yk − yk−1, γk − γk−1)‖2N − ‖(yk − yk−1, γk − γk−1)‖2P

)
.

We will show that ak ≥ ηk − ηk−1, where the sequence {ηk} is defined in (21). From (43), we find

τ1

β
‖γ̃k − γk−1‖2 =

1

α3
‖(yk − yk−1, γk − γk−1)‖2ατ1S ,

which, combined with definition of ak, yields

ak =
1

α3
‖(yk − yk−1, γk − γk−1)‖2σN−ατ1S−P .

Hence, using the definitions of N , S and P in (43) and (44), we obtain

ak =
1

α3

(
ξ̂β‖B(yk − yk−1)‖2 + 2ξ 〈B(yk − yk−1), γk − γk−1〉+

ξ̃

β
‖γk − γk−1‖2

)
, (52)

where

ξ̂ = σ(1 + α(2− α))− ατ1 − 1, ξ = σ(1 + α− α2) + (1− τ1)α− 1, ξ̃ = σ − ατ1 − (1− α)2. (53)

Now, from the definition of σ given in (20), we obtain σ ≥ (1 + ατ1)/(1 + α(2 − α)). Hence, ξ̂ ≥ 0
and

ξ̃ ≥ 1 + ατ1

1 + α(2− α)
− ατ1 − (1− α)2 =

α2(2− τ1 − α)(2− α)

1 + α(2− α)
> 0,

18



where the last inequality is due to the fact that α ∈ (0, 2− τ1). Moreover, since σ ∈ (0, 1) (see (20)),
we find

ξ = σ(1 + α− α2) + α− τ1α− 1 > σ(1 + α(2− α))− ατ1 − 1 = ξ̂.

Thus, ξ > ξ̂ ≥ 0, and ξ̃ ≥ 0. Hence, from (52) and Lemma A.2, it follows that

ak ≥
2ξ

α3
〈B(yk − yk−1), γk − γk−1〉 ≥


1

α3

(
ξ ‖y1 − y0‖2H − 4ξd2

0

)
, k = 1,

1

α3

(
ξ ‖yk − yk−1‖2H − ξ ‖yk−1 − yk−2‖2H

)
, k ≥ 2,

which, combined with the definitions of {ηk} in (21), yields ak ≥ ηk − ηk−1 for every k ≥ 1. Hence,
the desired inequality now follows from (51).

Proof of Proposition 2.3(b): First, for every z∗ = (x∗, y∗, γ∗) ∈ Ω∗, we have

‖z∗ − zk‖2M − ‖z∗ − zk−1‖2M = ‖(z∗ − z̃k) + (z̃k − zk)‖2M − ‖(z∗ − z̃k) + (z̃k − zk−1)‖2M
= ‖z̃k − zk‖2M − ‖z̃k − zk−1‖2M + 2〈M(zk−1 − zk), z∗ − z̃k〉.

Now, since M(zk−1 − zk) ∈ T (z̃k) (see (22)), 0 ∈ T (z∗), and T is monotone, we trivially obtain
〈M(zk−1 − zk), z̃k − z∗〉 ≥ 0. Therefore, combining the last two inequalities and (22), we obtain

‖z∗ − zk‖2M − ‖z∗ − zk−1‖2M ≤ ηk−1 − ηk − (1− σ)‖z̃k − zk−1‖2M ,

which is equivalent to the desired inequality.
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