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Abstract

In this paper, we obtain global O(1/
√
k) pointwise and O(1/k) ergodic convergence rates for

a variable metric proximal alternating direction method of multipliers (VM-PADMM) for solving
linearly constrained convex optimization problems. The VM-PADMM can be seen as a class of
ADMM variants, allowing the use of degenerate metrics (defined by noninvertible linear opera-
tors). We first propose and study nonasymptotic convergence rates of a variable metric hybrid
proximal extragradient (VM-HPE) framework for solving monotone inclusions. Then, the above-
mentioned convergence rates for the VM-PADMM are obtained essentially by showing that it falls
within the latter framework. To the best of our knowledge, this is the first time that global point-
wise (resp. pointwise and ergodic) convergence rates are obtained for the VM-PADMM (resp.
VM-HPE framework).
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1 Introduction

We consider the linearly constrained convex optimization problem

minimize f(x) + g(y)

subject to Ax+By = b,
(1)

where f : X → R := R ∪ {+∞} and g : Y → R are extended-real-valued proper closed and convex
functions, X ,Y and Γ are finite-dimensional real vector spaces, and A : X → Γ and B : Y → Γ
are linear operators. One of the most popular methods for solving (1) is the alternating direction
method of multipliers (ADMM) [4, 14, 15], for which many variants have been proposed and studied
in the literature; see, e.g., [1, 3, 7, 9, 10, 11, 12, 13, 17, 18, 19, 21, 25, 31].
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In this paper, we obtain global ergodic and pointwise convergence rates for a variable met-
ric proximal ADMM (VM-PADMM) which can be described as follows: given an initial point
(x0, y0, γ0) ∈ X × Y × Γ, compute a sequence {(xk, yk, γk)}, recursively, by

xk ∈ argminx∈X

{
f(x)− 〈γk−1, Ax〉X +

1

2
‖Ax+Byk−1 − b‖2Γ,Hk

+
1

2
‖x− xk−1‖2X ,Rk

}
, (2)

yk ∈ argminy∈Y

{
g(y)− 〈γk−1, By〉Y +

1

2
‖Axk +By − b‖2Γ,Hk

+
1

2
‖y − yk−1‖2Y,Sk

}
, (3)

γk = γk−1 −Hk (Axk +Byk − b) , (4)

where Hk, Rk and Sk are selfadjoint linear operators such that Hk is positive definite and Rk and
Sk are positive semidefinite, and ‖ · ‖2Γ,Hk

:= 〈Hk(·), ·〉Γ, etc. We start by reviewing some existing
methods and works related to the above method.

VM-PADMM and some variants. The VM-PADMM (2)–(4) can be seen as a class of ADMM
variants, depending on the choices of the linear operators Hk, Rk and Sk. Namely,

• by taking Hk = βI with β > 0, Rk = 0 and Sk = 0, it reduces to the standard ADMM, whose
the ergodic convergence rate was established in [30];

• the ADMM in [21] (related to the Uzawa method [37]) consists of taking Hk = βI with β > 0,
Rk constant and Sk = 0. Pointwise and ergodic convergence rates for this variant were obtained
in [21, 22];

• the proximal ADMM consists of choosing Hk = βI with β > 0, Rk and Sk constant. This
method has been studied by many authors; see, for instance [8, 10, 16], where convergence
rates are analyzed;

• by choosing Hk = βkI, Rk = 0 and Sk = 0, it corresponds to a variable penalty parameter
ADMM, for which asymptotic convergence analysis was considered in [20, 23, 35];

• the VM-PADMM (2)–(4) with Rk and Sk positive definite is closely related to the method stud-
ied in [19, 26] for solving (point-to-point) continuous monotone variational inequality problems
(in the setting of problem (1), it demands f and g to be continuously differentiable). We
mention that, contrary to our analysis, the latter references do not present nonasymptotic
convergence rates;

• by letting Hk = βI, β > 0, the resulting method becomes similar to Algorithm 7 in [2], where
a composite structure of f is considered and ergodic convergence rates were obtained under
the additional conditions that B = I in (1) and the dual solution set of (1) be bounded.

Contributions of the paper. We obtain an O(1/k) global convergence rate for an ergodic sequence
associated to the VM-PADMM (2)–(4), which provides, for given tolerances ρ, ε > 0, triples (x, y, γ̃),
(rx, ry, rγ) and scalars εx, εy ≥ 0 such that

rx ∈ ∂εxf(x)−A∗γ̃, ry ∈ ∂εyg(y)−B∗γ̃, rγ = Ax+By − b,
max

{
‖rx‖∗x , ‖ry‖∗y , ‖rγ‖∗γ

}
≤ ρ,

εx+εy ≤ ε,
(5)
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in at most O
(
max

{
dd0/ρ e ,

⌈
d2

0/ε
⌉})

iterations, where ‖·‖∗x , ‖·‖∗y and ‖·‖∗γ denote dual seminorms
associated to the linear operators Hk, Rk and Sk, and d0 is a scalar measuring the quality of the initial
point. Moreover, we establish an O(1/

√
k) pointwise convergence rate in which the inclusions in (5)

are strengthened, in the sense that εx = εy = 0, and the bound on the number of iterations becomes
O
(⌈
d2

0/ρ
2
⌉)

. Our study is done by first establishing global ergodic and pointwise convergence
rates for a variable metric hybrid proximal extragradient (VM-HPE) framework for finding zeroes
of maximal monotone operators, and then by showing that the VM-PADMM (2)–(4) can be seen as
an instance of the latter framework. To the best of our knowledge, this is the first time that global
pointwise (resp. pointwise and ergodic) convergence rates are obtained for the VM-PADMM (2)–(4)
(resp. VM-HPE framework). Besides, our analysis allows degenerate metrics (induced by positive
semidefinite linear operators) which makes the VM-PADMM (2)–(4) (and the VM-HPE framework)
more suitable for applications. We next briefly review some related works to the VM-HPE framework.

VM-HPE type frameworks. The VM-HPE framework proposed in this work is a generalization
of a special instance of the HPE framework [36] allowing variations in the metric (induced by positive
semidefinite linear operators) along the iterations. The iteration complexity of the HPE framework
was first analyzed in [28] and subsequently applied to the study of several methods; see, for example,
[24, 27, 29, 30]. An inexact variable metric proximal point type method was proposed in [32] but,
contrary to our VM-HPE framework, it demands the metrics to be nondegenerate (induced by
invertible linear operators). Moreover, the convergence analysis presented in [32] does not include
nonasymptotic convergence rates.

Outline of the paper. Subsection 1.1 presents our notation and basic results. Section 2 introduces
the VM-HPE framework and presents its nonasymptotic pointwise and ergodic convergence rates,
whose proofs are postponed to Appendix A. Section 3 contains two subsections. In Subsection 3.1,
we formally state the VM-ADMM (2)–(4) and presents its nonasymptotic pointwise and ergodic
convergence rates. In Subsection 3.2, we obtain the convergence rates of the VM-ADMM by viewing
it as an instance of the VM-HPE framework.

1.1 Basic results and notation

Let Z be a finite-dimensional real vector space with inner product 〈·, ·〉Z and induced norm ‖ · ‖Z :=√
〈·, ·〉Z . Denote by MZ+ (resp. MZ++) the space of selfadjoint positive semidefinite (resp. definite)

linear operators on Z. Each element M ∈ MZ+ induces a symmetric bilinear form 〈M(·), ·〉Z on

Z × Z and a seminorm ‖ · ‖Z,M :=
√
〈M(·), ·〉Z on Z. Since 〈M(·), ·〉Z is symmetric and bilinear,

the following hold, for all z, z′ ∈ Z,

〈z,Mz′〉 ≤ 1

2
‖z‖2Z,M +

1

2
‖z′‖2Z,M , (6)

‖z + z′‖2Z,M ≤ 2
(
‖z‖2Z,M + ‖z′‖2Z,M

)
. (7)

Moreover, each M ∈MZ+ also induces a (extended) dual seminorm on Z defined by

‖z‖∗Z,M := sup
‖z′‖Z,M≤1

〈z, z′〉Z (z ∈ Z).

On the other hand, each M ∈ MZ++ induces an inner product 〈M(·), ·〉Z and a norm ‖ · ‖Z,M :=√
〈M(·), ·〉Z on Z, etc.
Next two propositions, whose proofs are omitted, will be useful in this paper.
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Proposition 1.1. For every M ∈ MZ+, we have dom ‖ · ‖∗Z,M = R(M) and ‖M(·)‖∗Z,M = ‖ · ‖Z,M ,
where R(M) denotes the range of M .

Let the partial order � on MZ+ be defined by

M � N ⇐⇒ N −M ∈MZ+.

Proposition 1.2. Let M,N ∈MZ+ and c > 0. If M � cN , then

‖ · ‖Z,M ≤
√
c ‖ · ‖Z,N and ‖ · ‖∗Z,N ≤

√
c ‖ · ‖∗Z,M . (8)

A set-valued mapping T : Z ⇒ Z is said to be monotone if

〈v − v′, z − z′〉 ≥ 0 ∀ z, z′ ∈ Z,∀ v ∈ T (z),∀ v′ ∈ T (z′).

Moreover, T is maximal monotone if it is monotone and, additionally, if S is a monotone operator
such that T (z) ⊂ S(z) for every z ∈ Z then T = S. The inverse operator T−1 : Z ⇒ Z of T is
given by T−1(v) := {z ∈ Z | v ∈ T (z)}. Given ε ≥ 0, the ε-enlargement T ε : Z ⇒ Z of a set-valued
mapping T : Z ⇒ Z is defined as

T ε(z) := {v ∈ Z | 〈v − v′, z − z′〉 ≥ −ε, ∀z′ ∈ Z, ∀ v′ ∈ T (z′)} ∀z ∈ Z.

Recall that the ε-subdifferential of a convex function f : Z → R is defined by ∂εf(z) := {v ∈
Z | f(z′) ≥ f(z) + 〈v, z′ − z〉 − ε ∀z′ ∈ Z} for every z ∈ Z. When ε = 0, then ∂0f(z) is denoted by
∂f(z) and is called the subdifferential of f at z. The operator ∂f is trivially monotone if f is proper.
If f is a proper closed and convex function, then ∂f is also maximal monotone [34].

The following result is a particular case of the weak transportation formula in [6, Theorem 2.3]
combined with [5, Proposition 2(i)].

Theorem 1.3. Suppose T : Z ⇒ Z is maximal monotone and let z̃i, ri ∈ Z, for i = 1, . . . , k, be
such that ri ∈ T (z̃i) and define

z̃ak :=
1

k

k∑
i=1

z̃i , rak :=
1

k

k∑
i=1

ri , εak :=
1

k

k∑
i=1

〈ri, z̃i − z̃ak〉.

Then, the following hold:

(a) εak ≥ 0 and rak ∈ T ε
a
k(z̃ak);

(b) if, in addition, T = ∂f for some proper closed and convex function f , then rak ∈ ∂εakf(z̃ak).

2 A variable metric HPE framework

Consider the monotone inclusion problem

0 ∈ T (z), (9)

where Z is a finite-dimensional inner product real vector space and T : Z ⇒ Z is maximal monotone.
Assume that the solution set T−1(0) of (9) is nonempty.
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In this section, we propose a variable metric hybrid proximal extragradient (VM-HPE) framework
for solving (9) and analyze its nonasymptotic convergence rates. The proposed framework finds
its roots in the hybrid proximal extragradient (HPE) framework of [36], for which the iteration
complexity was recently obtained in [28]. Our main results on pointwise and ergodic convergence
rates for the VM-HPE framework are presented in Theorems 2.2 and 2.3, respectively. In Section 3,
we will show how the VM-HPE framework can be used to analyze the nonasymptotic convergence
of a VM-PADMM for solving linearly constrained convex optimization problems.

We begin by stating the VM-HPE framework.

A variable metric hybrid proximal extragradient (VM-HPE) framework

(0) Let z0 ∈ Z, η0 ∈ R+ and σ ∈ [0, 1) be given, and set k = 1.

(1) Choose Mk ∈MZ+ and find (zk, z̃k, ηk) ∈ Z × Z × R+ such that

rk := Mk(zk−1 − zk) ∈ T (z̃k), (10)

‖zk − z̃k‖2Z,Mk
+ ηk ≤ σ‖zk−1 − z̃k‖2Z,Mk

+ ηk−1. (11)

(2) Set k ← k + 1 and go to step 1.

end

Remarks. 1) Letting Mk ≡ I and ηk ≡ 0 in (10) and (11), respectively, we find that the sequences
{zk}, {z̃k} and {rk} satisfy

rk ∈ T (z̃k), ‖rk + z̃k − zk−1‖2Z ≤ σ‖z̃k − zk−1‖2Z ,
zk = zk−1 − rk,

which is to say that in this case the VM-HPE framework reduces to a special case of the HPE
framework (see pp. 2763 in [28]) with λk ≡ 1 (in the notation of [28]) or, in other words, the VM-
HPE framework is a generalization of a special case of the HPE framework in which variations in
the metric are allowed along the iterations. 2) If the sequence {Mk}k≥0 is taken to be constant, then
the VM-HPE framework reduces to a special case of the NE-HPE framework studied in [16]. 3) We
also mention that a variable metric inexact proximal point method with relative error tolerance was
proposed in [32] but, contrary to our framework, the method of [32] demands that every operator
Mk must be positive definite. Moreover, the convergence analysis presented in [32] does not include
nonasymptotic convergence rates. The fact that the VM-HPE framework allows positive semidefinite
operators Mk will be crucial for viewing the VM-PADMM of Section 3 as a special instance of it.

From now on in this section, we assume the following condition to hold:

Assumption 2.1. For the sequence {Mk}k≥1 generated by the VM-HPE framework, there exist
M0 ∈MZ+, 0 ≤ CS <∞ and, for each k ≥ 0, ck ≥ 0 such that {ck}k≥0 and {Mk}k≥0 satisfy

k∑
i=0

ci ≤ CS ,
1

1 + ck
Mk �Mk+1 � (1 + ck)Mk ∀ k ≥ 0. (12)
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Remark. The above assumption (which is similar to condition (1.4) in [32]) is satisfied, for instance,
if the sequence {Mk}k≥0 is taken to be constant and ck ≡ 0, in which case one can choose CS = 0.

It is easy to check that Assumption 2.1 implies the existence of a constant CP > 0 such that
{ck}k≥0 and {Mk}k≥0 satisfy

k∏
i=0

(1 + ci) ≤ CP and Mj � CPMk, ∀ j, k ≥ 0. (13)

In the remaining part of this section, we present pointwise and ergodic convergence rates for the
VM-HPE framework. These results will depend on the quantity:

d0 := inf{‖z∗ − z0‖Z,M0 | z∗ ∈ T−1(0)}, (14)

which measures the “quality” of the initial guess z0 ∈ Z in the VM-HPE framework with respect to
the solution set T−1(0).

For technical reasons and for the convenience of the reader, the proofs of the next two theorems
will be given in Appendix A.

Theorem 2.2. (Pointwise convergence rate of the VM-HPE framework) Let {z̃k}, {rk}
and {Mk} be generated by the VM-HPE framework. Let also CP and d0 be as in (13) and (14),
respectively. Then, for every k ≥ 1, rk ∈ T (z̃k) and there exists i ≤ k such that

‖ri‖∗Z,Mi
≤
(

2(1 + σ)CP (d2
0 + η0) + 2(1− σ)η0

(1− σ)k

)1/2

. (15)

Remarks. 1) If ck ≡ 0 in Assumption 2.1 (in which case Mk ≡ M0), then the upper bound in
(15) with CS = 0 and CP = 1 reduces essentially to a special case of [16, Theorem 3.3(a)] (with
λk ≡ 1, εk ≡ 0 and d(w)z(z

′) = (1/2)‖z − z′‖2). Additionally, if M0 = I and η0 = 0, then the bound
(15) becomes similar to the corresponding one in [28, Theorem 4.4(a)]. 2) For a given tolerance
ρ > 0, Theorem 2.2 ensures that there exists an index

i = O
(⌈

Cp(d
2
0 + η0)

ρ2

⌉)
(16)

such that

ri ∈ T (z̃i) and ‖ri‖∗Z,Mi
≤ ρ. (17)

In this case, z̃i ∈ Z can be interpreted as a ρ-approximate solution of (9) with residual ri ∈ Z (see,
e.g., [28] for the definition of a related concept).

Before presenting the ergodic convergence of the VM-HPE framework, let us define the ergodic
sequences {z̃ak}, {rak} and {εak} associated to {z̃k} and {rk} as follows:

z̃ak :=
1

k

k∑
i=1

z̃i, rak :=
1

k

k∑
i=1

ri, εak :=
1

k

k∑
i=1

〈ri, z̃i − z̃ak〉. (18)
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Theorem 2.3. (Ergodic convergence rate of the VM-HPE framework) Let {z̃ak}, {rak} and
{εak} be given as in (18) and {Mk} be generated by the VM-HPE framework. Let also CS, CP and
d0 be as in (12), (13) and (14), respectively. Then, for every k ≥ 1, we have rak ∈ T ε

a
k(z̃ak) and

‖rak‖∗Z,Mk
≤ E

√
d2

0 + η0

k
, (19)

0 ≤ εak ≤
Ê(d2

0 + η0)

k
, (20)

where E := (1 + CP )
(√
CP + CSCP

)
+ CSC

3/2
P and Ê := 2CP (1 + CS) [σCP /(1− σ) + 2(1 + CP )].

Remarks. 1) Similarly to the first remark after Theorem 2.2, Theorem 2.3 is also related to [16,
Theorem 3.4] and [28, Theorem 4.7]. 2) For given tolerances ρ, ε > 0, Theorem 2.3 ensures that in
at most

O

(
(1 + CS)C2

p max

{⌈√
d2

0 + η0

ρ

⌉
,

⌈
d2

0 + η0

ε

⌉})
(21)

iterations there hold

rak ∈ T ε
a
k(z̃ak), ‖rak‖∗Z,Mk

≤ ρ and εak ≤ ε. (22)

Note that (21), in terms of the dependence on ρ > 0, is better than the bound in (16) by a factor
of O (ρ) but, on the other hand, since εak can be strictly positive, the inclusion in (22) is potentially
weaker than the one in (17).

3 A variable metric proximal alternating direction method of mul-
tipliers

This section contains two subsections. In Subsection 3.1, we formally state the VM-PADMM (2)–(4)
and present its nonasymptotic convergence rates. The main results are Theorems 3.2 and 3.3 in
which pointwise and ergodic convergence rates are obtained, respectively. The proofs of the latter
theorems are discussed separately in Subsection 3.2 by viewing the method as an instance of the
VM-HPE framework and by applying the results of Section 2.

3.1 VM-PADMM and its convergence rates

Let X , Y and Γ be finite-dimensional real inner product vector spaces. Consider the convex opti-
mization problem (1), i.e.,

minimize f(x) + g(y)

subject to Ax+By = b,
(23)

where the following assumptions are assumed to hold:

(O1) f : X → R and g : Y → R are proper closed and convex functions;

(O2) A : X → Γ and B : Y → Γ are linear operators and b ∈ Γ;
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(O3) the solution set of (23) is nonempty.

Under the above assumptions and standard constraint qualifications (see, e.g.,[33, Corollaries 28.2.2
and 28.3.1]), a vector (x∗, y∗) ∈ X × Y is a solution of (23) if and only if there exists a (Lagrange
multiplier) γ∗ ∈ Γ such that (x∗, y∗, γ∗) is a solution of

0 ∈ ∂f(x)−A∗γ, 0 ∈ ∂g(y)−B∗γ, Ax+By − b = 0. (24)

Motivated by the above statement, we define

Ω∗ := {(x∗, y∗, γ∗) ∈ X × Y × Γ | (x∗, y∗, γ∗) is a solution of (24)} , (25)

which is assumed to be nonempty.
The convergence rates of the VM-PADMM (stated below) for solving (23) will be obtained by

viewing the optimization problem (23) as the monotone inclusion (24), which is associated to a
certain maximal monotone operator (see (45)) in X × Y × Γ, and by applying the results of the
previous section.

Variable metric proximal alternating direction method of multipliers (VM-PADMM).

(0) Let (x0, y0, γ0) ∈ X × Y × Γ be given, and set k = 1.

(1) Choose Rk ∈ MX+ , Sk ∈ MY+ and Hk ∈ MΓ
++ and compute an optimal solution xk ∈ X of

the subproblem

min
x∈X

{
f(x)− 〈γk−1, Ax〉X +

1

2
‖Ax+Byk−1 − b‖2Γ,Hk

+
1

2
‖x− xk−1‖2X ,Rk

}
(26)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
g(y)− 〈γk−1, By〉Y +

1

2
‖Axk +By − b‖2Γ,Hk

+
1

2
‖y − yk−1‖2Y,Sk

}
. (27)

(2) Set
γk = γk−1 −Hk (Axk +Byk − b) , (28)

k ← k + 1, and go to step (1).

end

Remarks. 1) As already mentioned in Section 1, the VM-PADMM can be regarded as a class of
ADMM instances, allowing a unified study of different variants of ADMM. 2) An usual choice for
the linear operator Hk is βkI, where βk > 0 plays the role of a penalty parameter. 3) The proximal
terms in (26) and (27) defined by Rk and Sk, respectively, may have different roles. Namely, they
can be used to regularize the subproblems in (26) and (27), making them strongly convex (when Rk
and Sk are positive definite operators) and hence admitting unique solutions. Moreover, by a careful
choice of these operators, subproblems (26) and (27) may become much easier to solve; for instance,
if Hk = βkI, then Rk = τkI−βkA∗A with τk > βk‖A∗A‖ and Sk = θkI−βkB∗B with θk > βk‖B∗B‖
eliminate the presence of quadratic forms associated to A∗A and B∗B in (26) and (27), respectively.

From now on in this section, the following conditions are assumed to hold:
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Assumption 3.1. For the sequences {Rk}k≥1, {Sk}k≥1 and {Hk}k≥1 generated by the VM-PADMM,
there exist R0 ∈MX+ , S0 ∈MY+, H0 ∈MΓ

++, 0 ≤ CS <∞ and, for each k ≥ 0, ck ∈ [0, 1] such that
{ck}k≥0, {Qk,1 := Rk}k≥0, {Qk,2 := Sk}k≥0 and {Qk,3 := Hk}k≥0 satisfy

k∑
i=0

ci ≤ CS ,
1

1 + ck
Qk,j � Qk+1,j � (1 + ck)Qk,j ∀k ≥ 0, j = 1, 2, 3. (29)

Analogously to condition (13), assumption 3.1 implies the existence of CP > 0 such that {ck}k≥0

satisfies

k∏
i=0

(1 + ci) ≤ CP ∀k ≥ 0. (30)

We mention that Assumption 3.1 is similar to Condition C in [19] but, contrary to the latter reference,
none of the operators Rk and Sk is assumed to be positive definite.

Similarly to the previous section, the following quantity will be needed:

d0 := inf

{(
‖x0 − x∗‖2X ,R0

+ ‖y0 − y∗‖2Y,(B∗H0B+S0) + ‖γ0 − γ∗‖2Γ,H−1
0

)1/2
| (x∗, y∗, γ∗) ∈ Ω∗

}
,

(31)
where (x0, y0, γ0) is given in Step (0) of the VM-PADMM, R0 ∈MX+ , S0 ∈MY+ and H0 ∈MΓ

++ are
given in Assumption 3.1, and Ω∗ is defined in (25).

Next we present the two main results of this paper, whose proofs are given in Subsection 3.2.

Theorem 3.2. (Pointwise convergence rate of the VM-PADMM) Let {(xk, yk, γk)}, {Rk},
{Sk} and {Hk} be generated by the VM-PADMM and let

γ̃k := γk−1 −Hk(Axk +Byk−1 − b) ∀ k ≥ 1. (32)

Let also CP and d0 be as in (30) and (31), respectively. Then, for all k ≥ 1, rk,x

rk,y

rk,γ

 :=

 Rk(xk−1 − xk)
(B∗HkB + Sk)(yk−1 − yk)

H−1
k (γk−1 − γk)

 ∈
 ∂f(xk)−A∗γ̃k

∂g(yk)−B∗γ̃k
Axk +Byk − b

 (33)

and there exists i ≤ k such that

max
{
‖ri,x‖∗X ,Ri

, ‖ri,y‖∗Y,(B∗HiB+Si)
, ‖ri,γ‖∗Γ,H−1

i

}
≤ d0√

k

√
2(15Cp + 4). (34)

Remark. For a given tolerance ρ > 0, Theorem 3.2 guarantees the existence of triples (x, y, γ̃),
(rx, ry, rγ) and operators R ∈ MX+ , S ∈ MY+ and H ∈ MΓ

++ (generated by the VM-PADMM) such
that

rx ∈ ∂f(x)−A∗γ̃, ry ∈ ∂g(y)−B∗γ̃, rγ = Ax+By − b,

max
{
‖rx‖∗X ,R , ‖ry‖∗Y,(B∗HB+S) , ‖rγ‖

∗
Γ,H−1

}
≤ ρ,

(35)
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in at most

O
(⌈

Cp d
2
0

ρ2

⌉)
(36)

iterations, where CP and d0 are as in (30) and (31), respectively. The triple (x, y, γ̃) in (35) can be
seen as a ρ-approximate solution of the KKT system (24) with residual (rx, ry, rγ).

Before proceeding to present the ergodic convergence of the VM-PADMM we need to introduce
its associated ergodic sequences. Let {(xk, yk, γk)} be generated by the VM-PADMM, let {γ̃k} and
{(rk,x, rk,y, rk,γ)} be defined as in (32) and (33), respectively, and let the ergodic sequences associated
to them be defined by

(xak, y
a
k) :=

1

k

k∑
i=1

(xi, yi) , γ̃ak :=
1

k

k∑
i=1

γ̃i, (37)

(rak,x, r
a
k,y, r

a
k,γ) :=

1

k

k∑
i=1

(ri,x, ri,y, ri,γ), (38)

(εak,x, ε
a
k,y) :=

1

k

k∑
i=1

(
〈ri,x +A∗γ̃i, xi − xak〉X , 〈ri,y +B∗γ̃i, yi − yak〉Y

)
. (39)

Theorem 3.3. (Ergodic convergence rate of the VM-PADMM) Let {Rk}, {Sk} and {Hk}
be generated by the VM-PADMM and let {(xak, yak)}, {γ̃ak}, {(rak,x, rak,y, rak,γ)} and {(εak,x, εak,y)} be the
ergodic sequences defined as in (37)–(39). Let also CS, CP , and d0 be as in (29), (30) and (31),
respectively. Then, for all k ≥ 1, we have εak,x, ε

a
k,y ≥ 0, rak, x

rak, y
rak, γ

 ∈
 ∂fεak,x(xak)−A∗γ̃ak

∂gεak,y(yak)−B∗γ̃ak
Axak +Byak − b

 (40)

and

max
{
‖rak, x‖∗X ,Rk

, ‖rak, y‖∗Y,(B∗HkB∗+Sk), ‖r
a
k, γ‖∗Γ,H−1

k

}
≤
√

5E d0

k
, (41)

εak,x + εak,y ≤
Ẽd2

0

k
, (42)

where E is defined as in Theorem 2.3 and Ẽ := 10CP (1 + CS) (2 + 3CP ).

Remark. Given tolerances ρ, ε > 0, Theorem 3.3 guarantees that there exist scalars εx, εy ≥ 0,
triples (x, y, γ̃), (rx, ry, rγ) and operators R ∈ MX+ , S ∈ MY+ and H ∈ MΓ

++ (generated by the
VM-PADMM) such that

rx ∈ ∂εxf(x)−A∗γ̃, ry ∈ ∂εyg(y)−B∗γ̃, rγ = Ax+By − b,

max
{
‖rx‖∗X ,R , ‖ry‖∗Y,(B∗HB+S) , ‖rγ‖

∗
Γ,H−1

}
≤ ρ,

εx+εy ≤ ε,

(43)
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in at most

O
(

(1 + CS)C2
p max

{⌈
d0

ρ

⌉
,

⌈
d2

0

ε

⌉})
(44)

iterations, where CS , CP and d0 are as in Assumption 3.1, (30) and (31), respectively. Note that
while the dependence on the tolerance ρ in (44) is better than the corresponding one in (36) by a
factor of O(ρ), the inclusions in (43) are potentially weaker than the corresponding ones in (35).
The triple (x, y, γ̃) in (43) can be seen as a (ρ, ε)-approximate solution of the KKT system (24) with
residual (rx, ry, rγ).

3.2 Proof of Theorems 3.2 and 3.3

The main goal of this subsection is to prove Theorems 3.2 and 3.3 by viewing the VM-PADMM as
an instance of the VM-HPE framework of Section 2 for solving (9) with T : Z ⇒ Z defined by

T (z) :=

 ∂f(x)−A∗γ
∂g(y)−B∗γ
Ax+By − b

 , ∀z := (x, y, γ) ∈ Z (45)

where Z := X×Y×Γ is endowed with the usual inner product of vectors z = (x, y, γ), z′ = (x′, y′, γ′):

〈z, z′〉Z := 〈x, x′〉X + 〈y, y′〉Y + 〈γ, γ′〉Γ. (46)

The desired results will then follow essentially from Theorems 2.2 and 2.3, and from the identity

T−1(0) = Ω∗, (47)

where T−1(0) and Ω∗ are the solution sets defined in (9) and (25), respectively. The following linear
operators will be needed in our analysis:

Mk :=

 Rk 0 0
0 B∗HkB + Sk 0
0 0 Hk

−1

 : Z → Z ∀ k ≥ 0, (48)

where {Rk}k≥1, {Sk}k≥1 and {Hk}k≥1 are generated by the VM-PADMM and R0 ∈MX+ , S0 ∈MY+,
H0 ∈MΓ

++ are given in Assumption 3.1.
We begin by presenting a preliminary technical result.

Proposition 3.4. Let {(xk, yk, γk)} be generated by the VM-PADMM and let {γ̃k} be defined as in
(32). Let also {Mk} be defined as in (48). Then,

Mk

 xk−1 − xk
yk−1 − yk
γk−1 − γk

 ∈
 ∂f(xk)−A∗γ̃k

∂g(yk)−B∗γ̃k
Axk +Byk − b

 ∀ k ≥ 1. (49)

Proof. From the first order optimality conditions for (26) and (27), we obtain, respectively,

0 ∈ ∂f(xk)−A∗ (γk−1 −Hk(Axk +Byk−1 − b)) +Rk(xk − xk−1),

0 ∈ ∂g(yk)−B∗(γk−1 −Hk(Axk +Byk − b)) + Sk(yk − yk−1),

11



which, combined with (32), yields

Rk(xk−1 − xk) ∈ ∂f(xk)−A∗γ̃k, (B∗HkB + Sk)(yk−1 − yk) ∈ ∂g(yk)−B∗γ̃k. (50)

On the other hand, (28) (and the assumption Hk ∈MΓ
++) gives

H−1
k (γk−1 − γk) = Axk +Byk − b. (51)

Using (48), (50) and (51) we obtain (49).

The next lemma will allow us to use the main results of Section 2 for analyzing the nonasymptotic
convergence of the VM-PADMM.

Lemma 3.5. The sequence {Mk}k≥0 defined in (48), the scalar CS and the sequence {ck} given in
Assumption 3.1 satisfy condition (12) of Assumption 2.1.

Proof. Note that the first condition in (29) is identical to the first one in (12). To finish the proof,
note that the second condition in (29), which by Assumption 3.1 is assumed to hold for {Rk}k≥0,
{Sk}k≥0 and {Hk}k≥0, combined with the (block) diagonal structure of Mk gives the second condition
in (12) for {ck}k≥0 and {Mk}k≥0.

The following technical result will be used to prove that the VM-PADMM is an instance of the
VM-HPE framework.

Lemma 3.6. Let {(xk, yk, γk)}, {Sk} and {Hk} be generated by the VM-PADMM and let {γ̃k} be
defined as in (32). Let also d0 be defined as in (31). Then, the following hold:

(a) for any k ≥ 1, we have
γ̃k − γk = HkB(yk − yk−1);

(b) we have
1

2
‖y1 − y0‖2Y,S1

− 〈B(y1 − y0), γ1 − γ0〉Γ ≤ 4d2
0;

(c) for any k ≥ 2, we have

〈B(yk − yk−1), γk − γk−1〉Γ ≥
1− ck−1

2
‖yk − yk−1‖2Sk

− 1

2
‖yk−1 − yk−2‖2Sk−1

.

Proof. (a) This item follows trivially from (28) and (32).
(b) First note that

0 ≤ 1

2
‖γ1 − γ0 +H1B(y1 − y0)‖2

Γ,H−1
1

=
1

2
‖γ1 − γ0‖2Γ,H−1

1
+ 〈B(y1 − y0), γ1 − γ0〉Γ +

1

2
‖B(y1 − y0)‖2Γ,H1

,

which combined with the property (7) yields, for all z∗ := (x∗, y∗, γ∗) ∈ Ω∗,

1

2
‖y1 − y0‖2Y,S1

− 〈B(y1 − y0), γ1 − γ0〉Γ ≤
1

2

(
‖y1 − y0‖2Y,S1

+ ‖γ1 − γ0‖2Γ,H−1
1

+ ‖B(y1 − y0)‖2Γ,H1

)
≤ ‖y1 − y∗‖2Y,S1

+ ‖y0 − y∗‖2Y,S1
+ ‖γ1 − γ∗‖2Γ,H−1

1

+ ‖γ0 − γ∗‖2Γ,H−1
1

+ ‖B(y1 − y∗)‖2Γ,H1
+ ‖B(y0 − y∗)‖2Γ,H1

.
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Direct use of the above inequality and (48) yields

1

2
‖y1 − y0‖2Y,S1

− 〈B(y1 − y0), γ1 − γ0〉Γ ≤ ‖z1 − z∗‖2Z,M1
+ ‖z0 − z∗‖2Z,M1

, (52)

where z0 := (x0, y0, γ0) and z1 := (x1, y1, γ1). Note now that letting z̃1 := (x1, y1, γ̃1), it follows from
(48), item (a) and some direct calculations that

‖z1 − z̃1‖2Z,M1
= ‖γ1 − γ̃1‖2Γ,H−1

1
= ‖B(y1 − y0)‖2Γ,H1

. (53)

Moreover, using (48) with k = 1, we find

‖z0 − z̃1‖2Z,M1
= ‖x0 − x1‖2X ,R1

+ ‖y0 − y1‖2Y,(B∗H1B+S1) + ‖γ0 − γ̃1‖2Γ,H−1
1

≥ ‖y0 − y1‖2Y,(B∗H1B+S1) ≥ ‖B(y1 − y0)‖2Γ,H1
. (54)

From Proposition 3.4 and (48) with k = 1, we have r1 := M1(z0−z1) ∈ T (z̃1), where T is given in (45).
Using this fact, (47) and the monotonicity of T we obtain 〈z̃1−z∗, r1〉 ≥ 0 for all z∗ = (x∗, y∗, z∗) ∈ Ω∗.
Hence, from the latter inequality, Lemma A.1 with (z, z+, z̃) = (z0, z1, z̃1) and M = M1, (53) and
(54) we have, for all z∗ = (x∗, y∗, z∗) ∈ Ω∗,

‖z∗ − z0‖2Z,M1
≥ ‖z∗ − z1‖2Z,M1

+ ‖z0 − z̃1‖2Z,M1
− ‖z1 − z̃1‖2Z,M1

≥ ‖z∗ − z1‖2Z,M1
+ ‖B(y1 − y0)‖2Γ,H1

− ‖B(y1 − y0)‖2Γ,H1
= ‖z∗ − z1‖2Z,M1

. (55)

From Assumption 3.1 and Lemma 3.5 we know that M1 � (1 + c0)M0 � 2M0, which combined with
Proposition 1.2 and (55) yields

‖z∗ − z1‖2Z,M1
≤ ‖z∗ − z0‖2Z,M1

≤ 2‖z∗ − z0‖2Z,M0
. (56)

Combining (31), (52), (55), (56) and taking the infimum over all z∗ ∈ Ω∗, we find the desired
inequality, whence item (b).

(c) Using the first order optimality condition for (27), and (28), we obtain

B∗γk − Sk(yk − yk−1) ∈ ∂g(yk) ∀ k ≥ 1.

For any k ≥ 2, using the above inclusion with k ← k and k ← k− 1, the monotonicity of ∂g and the
property (6), we find

〈B∗(γk − γk−1), yk − yk−1〉Y ≥ 〈Sk(yk − yk−1), yk − yk−1〉 − 〈Sk−1(yk−1 − yk−2), yk − yk−1〉

≥ ‖yk − yk−1‖2Sk
− 1

2
‖yk−1 − yk−2‖2Sk−1

− 1

2
‖yk − yk−1‖2Sk−1

,

≥
(

1− 1 + ck−1

2

)
‖yk − yk−1‖2Sk

− 1

2
‖yk−1 − yk−2‖2Sk−1

,

where the last inequality is due to Proposition 1.2 and Assumption 3.1, and so the proof of the
lemma follows.

Next we show that the VM-PADMM can be regarded as an instance of the VM-HPE framework.
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Proposition 3.7. Let {(xk, yk, γk)} be generated by the VM-PADMM and let {γ̃k} and {Mk} be
defined as in (32) and (48), respectively. Let also d0 and T be defined as in (31) and (45), respectively.
Define z0 := (x0, y0, γ0), η0 := 4d2

0 and, for all k ≥ 1,

zk := (xk, yk, γk), z̃k := (xk, yk, γ̃k), rk := Mk(zk−1 − zk), ηk :=
1

2
‖yk−1 − yk‖2Y,Sk

. (57)

Then, for all k ≥ 1,

rk ∈ T (z̃k),

‖zk − z̃k‖2Z,Mk
+ ηk ≤

1

2
‖zk−1 − z̃k‖2Z,Mk

+ ηk−1.
(58)

As a consequence, the VM-PADMM falls within the VM-HPE framework (with input z0, η0 and
σ = 1/2) for solving (9) with T as in (45).

Proof. First note that the inclusion in (58) follows from (45), (49) and the definitions of zk, z̃k and
rk in (57). Now, using (46), (48), (57) and some direct calculations, we obtain

‖zk−1 − z̃k‖2Z,Mk
= ‖xk−1 − xk‖2X ,Rk

+ ‖B(yk−1 − yk)‖2Γ,Hk
+ ‖yk−1 − yk‖2Y,Sk

+ ‖γk−1 − γ̃k‖2Γ,H−1
k

. (59)

Using the same reasoning and Lemma 3.6(a), we also find

‖zk − z̃k‖2Z,Mk
= ‖γk − γ̃k‖2Γ,H−1

k

= ‖B(yk−1 − yk)‖2Γ,Hk
. (60)

Hence, from the first identity in (60), Lemma 3.6(a) and some algebraic manipulations, we obtain

1

2
‖γk−1 − γ̃k‖2Γ,H−1

k

− ‖zk − z̃k‖2Z,Mk
=

1

2
‖γk−1 − γk‖2Γ,H−1

k

+
1

2
‖γk − γ̃k‖2Γ,H−1

k

+ 〈γk−1 − γk, H−1
k (γk − γ̃k)〉Γ − ‖zk − z̃k‖2Z,Mk

=
1

2
‖γk−1 − γk‖2Γ,H−1

k

− 1

2
‖γk − γ̃k‖2Γ,H−1

k

− 〈γk−1 − γk, B(yk − yk−1)〉Γ,

which in turn, combined with (59) and (60), yields

1

2
‖zk−1 − z̃k‖2Z,Mk

− ‖zk − z̃k‖2Z,Mk
=

1

2
‖xk−1 − xk‖2X ,Rk

+
1

2
‖yk−1 − yk‖2Y,Sk

+
1

2
‖γk−1 − γk‖2Γ,H−1

k

+ 〈B(yk − yk−1), γk − γk−1〉Γ

≥ 1

2
‖yk−1 − yk‖2Y,Sk

+ 〈B(yk − yk−1), γk − γk−1〉Γ. (61)

We will now consider two cases: k = 1 and k > 1. In the first case, it follows from Lemma 3.6(b),
(57), (61) with k = 1 and η0 = 4d2

0 that

1

2
‖z0 − z̃1‖2Z,M1

− ‖z1 − z̃1‖2M1
− η1 ≥ 〈B(y1 − y0), γ1 − γ0〉Γ ≥

1

2
‖y1 − y0‖2Y,S1

− 4d2
0 ≥ −η0,
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which gives (58) for k = 1. On the other hand, assuming k > 1, from Lemma 3.6(c), (57), (61) and
some manipulations, we have

1

2
‖zk−1 − z̃k‖2Z,Mk

− ‖zk − z̃k‖2Z,Mk
≥ 2− ck−1

2
‖yk−1 − yk‖2Y,Sk

− 1

2
‖yk−2 − yk−1‖2Y,Sk−1

≥ ηk − ηk−1,

where the last inequality is due to the fact that ck−1 ≤ 1 (see Assumption 3.1). Hence, we conclude
that (58) holds for all k ≥ 1. The last statement of the proposition follows directly from (58) and
VM-HPE framework’s definition.

We are now ready to prove Theorems 3.2 and 3.3.
Proof of Theorem 3.2: Using Proposition 3.7 and Theorem 2.2, we conclude that, for every k ≥ 1,
(33) holds and there exists i ≤ k such that

‖Mi(zi−1 − zi)‖∗Z,Mi
≤ d0√

k

√
2(15Cp + 4), (62)

where {Mk} and {zk} are defined in (48) and (57), respectively. Hence, using Proposition 1.1, we
obtain

‖Mi(zi−1 − zi)‖∗Z,Mi
= ‖zi−1 − zi‖Z,Mi

=
(
‖xi−1 − xi‖2X ,Ri

+ ‖yi−1 − yi‖2Y,(B∗HiB+Si)
+ ‖γi−1 − γi‖2Γ,Hi

)1/2
. (63)

On the other hand, using Proposition 1.1 and the definition in (33), we find

‖xi−1 − xi‖X ,Ri = ‖Ri(xi−1 − xi)‖∗X ,Ri
= ‖ri,x‖∗X ,Ri

,

‖yi−1 − yi‖Y,(B∗HiB+Si) = ‖(B∗HiB + Si)(yi−1 − yi)‖∗Y,(B∗HiB+Si)
= ‖ri,y‖∗Y,(B∗HiB+Si)

,

‖γi−1 − γi‖Γ,H−1
i

= ‖H−1
i (γi−1 − γi)‖∗Γ,H−1

i
= ‖ri,γ‖∗Γ,H−1

i
,

which, combined with (62) and (63), proves (34).

Proof of Theorem 3.3: Combining Proposition 3.7 and Theorem 2.3, and taking into account that
rak = (rak, x, r

a
k, y, r

a
k, γ), we conclude that, for every k ≥ 1,

max
{
‖rak, x‖∗X ,Rk

, ‖rak, y‖∗Y,(B∗HkB∗+Sk), ‖r
a
k, γ‖∗Γ,H−1

k

}
≤ ‖(rak, x, rak, y, rak, γ)‖∗Z,Mk

≤
√

5E d0

k
, (64)

εak =
1

k

(
k∑
i=1

〈ri,x, xi − xak〉X +
k∑
i=1

〈ri,y, yi − yak〉Y +
k∑
i=1

〈ri,γ , γ̃i − γ̃ak〉Γ

)
≤ Ẽd

2
0

k
, (65)

where E and Ẽ are defined as in Theorem 2.3 and Theorem 3.3, respectively. On the other hand,
(33), (37) and (38) yield

Axk +Byk = rk,γ + b, Axak +Byak = rak,γ + b.

Additionally, (37), (38) and some algebraic manipulations give

k∑
i=1

〈γ̃i, ri,γ − rak,γ〉Γ =

k∑
i=1

〈γ̃i − γ̃ak , ri,γ − rak,γ〉Γ =

k∑
i=1

〈γ̃i − γ̃ak , ri,γ〉Γ.
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Hence, combining the identity in (65) with the last two displayed equations, we also find

εak =
1

k

k∑
i=1

(
〈ri,x, xi − xak〉X + 〈ri,y, yi − yak〉Y

)
+

1

k

k∑
i=1

〈γ̃i, ri,γ − rak,γ〉Γ

=
1

k

k∑
i=1

(
〈ri,x, xi − xak〉X + 〈ri,y, yi − yak〉Y + 〈γ̃i, Axi −Axak +Byi −Byak〉Γ

)
=

1

k

k∑
i=1

〈ri,x +A∗γ̃i, xi − xak〉X +
1

k

k∑
i=1

〈ri,y +B∗γ̃i, yi − yak〉Y = εak,x + εak,y,

where the last equality is due to the definitions of εak,x and εak,y in (39). Therefore, the inequalities
in (41) and (42) now follows from (64) and (65), respectively.

To finish the proof of the theorem, note that direct use of Theorem 1.3(b) (for f and g), (33)
and (37)–(39) give εak,x, ε

a
k,y ≥ 0 and (40).

A Proof of Theorems 2.2 and 2.3

We start by presenting the following two Lemmas.

Lemma A.1. For any z∗, z, z+, z̃ ∈ Z and M ∈MZ+, we have

‖z∗ − z‖2Z,M − ‖z∗ − z+‖2Z,M = ‖z − z̃‖2Z,M − ‖z+ − z̃‖2Z,M + 2〈z̃ − z∗,M(z − z+)〉Z .

Proof. Direct calculations yield

‖z∗ − z‖2Z,M − ‖z∗ − z+‖2Z,M = 2〈z+ − z∗,M(z − z+)〉Z + ‖z+ − z‖2Z,M
= 2〈z+ − z̃,M(z − z+)〉Z + 2〈z̃ − z∗,M(z − z+)〉Z
+ ‖z+ − z‖2Z,M
= 2〈z̃ − z∗,M(z − z+)〉Z + ‖z̃ − z‖2Z,M − ‖z̃ − z+‖2Z,M .

Lemma A.2. Let {zk}, {Mk}, {z̃k} and {ηk} be generated by the VM-HPE framework. For every
k ≥ 1 and z∗ ∈ T−1(0) :

(a) we have

‖z∗ − zk‖2Z,Mk
≤ ‖z∗ − zk−1‖2Z,Mk

+ ηk−1 − ηk − (1− σ)‖zk−1 − z̃k‖2Z,Mk
;

(b) we have

‖z∗ − zk‖2Z,Mk
+ ηk + (1− σ)

k∑
i=1

‖zi−1 − z̃i‖2Z,Mi
≤ CP (‖z∗ − z0‖2Z,M0

+ η0) ,

where CP and M0 are as in (13) and Assumption 2.1, respectively.
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Proof. (a) From Lemma A.1 with (z, z+, z̃) = (zk−1, zk, z̃k) and M = Mk, (10) and (11), we obtain

‖z∗ − zk−1‖2Z,Mk
− ‖z∗ − zk‖2Z,Mk

+ ηk−1 ≥ (1− σ)‖zk−1 − z̃k‖2Z,Mk
+ ηk + 2〈z̃k − z∗, rk〉.

Hence, (a) follows from the above inequality, the fact that 0 ∈ T (z∗) and rk ∈ T (z̃k) (see (10)), and
the monotonicity of T .

(b) Using (a), (8) and Assumption 2.1, we find

‖z∗ − zk‖2Z,Mk
≤ (1 + ck−1)‖z∗ − zk−1‖2Z,Mk−1

+ ηk−1 − ηk − (1− σ)‖zk−1 − z̃k‖2Z,Mk
.

Thus, the result follows by applying the above inequality recursively and by using (13).

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2: First, note that the desired inclusion holds due to (10). Now, using (7)
and (11), we obtain, respectively,

‖zk−1 − zk‖2Z,Mk
≤ 2

(
‖zk−1 − z̃k‖2Z,Mk

+ ‖z̃k − zk‖2Z,Mk

)
,

‖z̃k − zk‖2Z,Mk
≤ σ‖zk−1 − z̃k‖2Z,Mk

+ ηk−1 − ηk.

Combining the above inequalities, we find

‖zk−1 − zk‖2Z,Mk
≤ 2

[
(1 + σ)‖zk−1 − z̃k‖2Z,Mk

+ ηk−1 − ηk
]
,

which in turn, combined with Lemma A.2(b), yields

k∑
i=1

‖zi−1 − zi‖2Z,Mi
≤

2(1 + σ)CP (‖z∗ − z0‖2Z,M0
+ η0) + 2(1− σ)η0

(1− σ)
, (66)

for all z∗ ∈ T−1(0). Hence, (15) follows from Proposition 1.1, (10), (14), (66) and the fact that∑k
i=1 ti ≥ kmini=1,...,k{ti}.

Before proceeding to the proof of the ergodic convergence of the VM-HPE framework, let us first
present an auxiliary result.

Proposition A.3. Let {zk}, {Mk} and {ηk} be generated by the VM-HPE framework and consider
{z̃ak} and {εak} as in (18). Then, for every k ≥ 1,

εak ≤
1

2k

(
η0 + ‖z̃ak − z0‖2Z,M0

+
k∑
i=1

ci−1‖z̃ak − zi−1‖2Z,Mi−1

)
, (67)

where M0 and {ck} are given in Assumption 3.1.

Proof. Using Lemma A.1 with (z∗, z, z+, z̃) = (z̃ak , zi−1, zi, z̃i) and M = Mi, (10) and (11), we find,
for every i = 1, . . . , k,

‖z̃ak − zi−1‖2Z,Mi
− ‖z̃ak − zi‖2Z,Mi

+ ηi−1 ≥ (1− σ)‖z̃i − zi−1‖2Z,Mi
+ ηi + 2〈ri, z̃i − z̃ak〉

≥ ηi + 2〈ri, z̃i − z̃ak〉,
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where the second inequality is due to the fact that 1 − σ ≥ 0. Hence, using Assumption 2.1 and
simple calculations, we obtain

‖z̃ak − zi‖2Z,Mi
≤ (1 + ci−1)‖z̃ak − zi−1‖2Z,Mi−1

+ ηi−1 − ηi − 2〈ri, z̃i − z̃ak〉 ∀i = 1, . . . , k.

Summing up the last inequality from i = 1 to i = k and using the definition of εak in (18), we have

0 ≤ ‖z̃ak − zk‖2Z,Mk
≤

k∑
i=1

ci−1‖z̃ak − zi−1‖2Z,Mi−1
+ ‖z̃ak − z0‖2Z,M0

+ η0 − 2k εak,

which clearly gives (67).

Proof of Theorem 2.3: Note first that the desired inclusion and the first inequality in (20) follow
from (10), (18) and Theorem 1.3(a). Take z∗ ∈ T−1(0). Now, let us prove the second inequality in
(20), which will follow by bounding the term in the right-hand side of (67). Note that, using the
convexity of ‖ · ‖2Mi−1

, inequality (7) and (18), we find

‖z̃ak − zi−1‖2Z,Mi−1
≤ 1

k

k∑
j=1

‖z̃j − zi−1‖2Z,Mi−1
≤ 2

k

k∑
j=1

(
‖z̃j − zj‖2Z,Mi−1

+ ‖zj − zi−1‖2Z,Mi−1

)
. (68)

From (13), we have Mi−1 � CPMj for all j = 1, . . . , k. Hence, using Proposition 1.2, inequality (11),
Lemma A.2(b) and (14), we find

k∑
j=1

‖z̃j − zj‖2Z,Mi−1
≤ CP

k∑
j=1

‖z̃j − zj‖2Z,Mj

≤ CP
k∑
j=1

(
σ‖z̃j − zj−1‖2Z,Mj

+ ηj−1 − ηj
)

≤ σ

1− σ
C2
p(d2

0 + η0) + CP η0. (69)

On the other hand, using (7), Mi−1 � CPMj for all j = 1, . . . , k, Proposition 1.2, Lemma A.2(b)
and (14), we obtain

k∑
j=1

‖zj − zi−1‖2Z,Mi−1
≤ 2

k∑
j=1

(
‖zj − z∗‖2Z,Mi−1

+ ‖z∗ − zi−1‖2Z,Mi−1

)

≤ 2
k∑
j=1

(
CP ‖zj − z∗‖2Z,Mj

+ ‖z∗ − zi−1‖2Z,Mi−1

)
≤ 2(1 + CP )CP (d2

0 + η0)k. (70)

It follows from inequalities (68)–(70) and the fact that k ≥ 1 that

‖z̃ak − zi−1‖2Z,Mi−1
≤
(
σCP
1− σ

+ 2(1 + CP )

)
2CP (d2

0 + η0) + 2CP η0,

which, combined with Proposition A.3 and the first condition in (12), yields
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εak ≤
1

2k

[
2CP (1 + CS)

(
σCP
1− σ

+ 2(1 + CP )

)
(d2

0 + η0) + (1 + 2(1 + CS)CP ) η0

]
.

Therefore, the second inequality in (20) now follows from definition of Ê and simple calculus.
To finish the proof of the theorem, it remains to prove (19). Assume first that k ≥ 2. Using (18)

and simple calculus, we have

k rak =
k∑
i=1

ri = M1(z0 − z∗)−Mk(zk − z∗) +
k−1∑
i=1

(Mi+1 −Mi)(zi − z∗). (71)

From (13), we obtain M1 � CPMk and M1 � CPM0. Hence, it follows from Propositions 1.1 and
1.2 that

‖M1(z0 − z∗)‖∗Z,Mk
≤
√
CP ‖M1(z0 − z∗)‖∗Z,M1

=
√
CP ‖z0 − z∗‖Z,M1

≤ Cp‖z0 − z∗‖Z,M0 . (72)

Direct use of Proposition 1.1 yields

‖Mk(zk − z∗)‖∗Z,Mk
= ‖zk − z∗‖Z,Mk

. (73)

Next step is to estimate the general term in the summation in (71). To do this, first note that using
Assumption 2.1, we find

0 � Li := Mi+1 −Mi + ciMi+1 � ci(2 + ci)Mi , ∀ i = 1, . . . , k − 1, (74)

and so

‖(Mi+1 −Mi)(zi − z∗)‖∗Z,Mk
= ‖(Li − ciMi+1)(zi − z∗)‖∗Z,Mk

≤ ‖Li(zi − z∗)‖∗Z,Mk
+ ci‖Mi+1(zi − z∗)‖∗Z,Mk

. (75)

From (13) and the last inequality in (74), we obtain, respectively, Mi � CpMk and Li � ci(2+ci)Mi.
Hence, using Propositions 1.1 and 1.2, we have

‖Li(zi − z∗)‖∗Z,Mk
≤
√
CP ‖Li(zi − z∗)‖∗Z,Mi

≤
√
CP
√
ci(2 + ci)‖Li(zi − z∗)‖∗Z,Li

=
√
CP
√
ci(2 + ci)‖zi − z∗‖Z,Li

≤
√
CP ci(2 + ci)‖zi − z∗‖Z,Mi . (76)

Again, from (13), we obtain Mi+1 � CPMk and Mi+1 � (1 + ci)Mi, and consequently

‖Mi+1(zi − z∗)‖∗Z,Mk
≤
√
Cp‖Mi+1(zi − z∗)‖∗Z,Mi+1

=
√
Cp‖zi − z∗‖Z,Mi+1

≤
√
CP (1 + ci)‖zi − z∗‖Z,Mi . (77)
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Hence, using (13) and (75)–(77), we find

‖(Mi+1 −Mi)(zi − z∗)‖∗Z,Mk
≤ ci

√
Cp
(
1 + (1 + ci) +

√
1 + ci

)
‖zi − z∗‖Z,Mi

≤ ci
√
CP

(
1 + CP +

√
CP

)
‖zi − z∗‖Z,Mi . (78)

Finally, using the definition of d0 in (14), (71)–(73), (78) and Lemma A.2(b), we conclude that

k‖rak‖∗Z,Mk
≤ ‖M1(z0 − z∗)‖∗Z,Mk

+ ‖Mk(zk − z∗)‖∗Z,Mk
+
k−1∑
i=1

‖(Mi+1 −Mi)(zi − z∗)‖∗Z,Mk

≤
(
CP + 1 + CS

√
CP

(
1 + CP +

√
CP

))
max
i=0,...,k

‖zi − z∗‖Z,Mi

≤
√
CP

(
CP + 1 + CS

√
CP

(
1 + CP +

√
CP

))√
d2

0 + η0

=
(

(1 + CP )
(√

CP + CSCP

)
+ CSC

3/2
P

)√
d2

0 + η0,

which gives (19) for the case k ≥ 2. Note now that by (13), we have M1 � CPM0 and so using
Propositions 1.1 and 1.2, Lemma A.2(b), (14) and the second identity in (18) with k = 1, we find

‖ra1‖∗Z,M1
= ‖r1‖∗Z,M1

= ‖M1(z0 − z1)‖∗Z,M1

= ‖z0 − z1‖Z,M1

≤ ‖z0 − z∗‖Z,M1 + ‖z1 − z∗‖Z,M1

≤
√
CP ‖z0 − z∗‖Z,M0 + ‖z1 − z∗‖Z,M1

≤ (1 +
√
CP )

√
CP

√
d2

0 + η0 ,

which in turn, combined with the fact that CP ≥ 1, gives (19) for k = 1.
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