
Gauss-Newton methods with approximate projections for solving
constrained nonlinear least squares problems
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Abstract

This paper is concerned with algorithms for solving constrained nonlinear least squares problems.
We first propose a local Gauss-Newton method with approximate projections for solving the aforemen-
tioned problems and study, by using a general majorant condition, its convergence results, including
results on its rate. By combining the latter method and a nonmonotone line search strategy, we then
propose a global algorithm and analyze its convergence results. Finally, some preliminary numerical
experiments are reported in order to illustrate the advantages of the new schemes.

Keywords: Constrained nonlinear least squares problems; approximate projection; Gauss-Newton methods;
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1 Introduction

This paper addresses the numerical solution of the constrained nonlinear least squares problem

min
x∈C

G(x) :=
1
2
‖F(x)‖2, (1)

where X and Y are real or complex Hilbert spaces, Ω ⊆ X an open set containing the nonempty convex
closed set C and F : Ω→ Y is a continuously differentiable nonlinear function such that F ′ has a closed
image in Ω. The constraint set C in (1) may naturally arise in order to exclude solutions of the model with
no physical meaning, or it may be considered artificially due to some knowledge about the problem itself
(see, e.g., [1, 2, 4, 24] for some applications which can be reformulated as a constrained nonlinear least
squares problem).
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tiagmenezes1@gmail.com). The work of these authors was supported in part by CAPES, FAPEG/CNPq/PRONEM-
201710267000532, and CNPq Grants 302666/2017-6 and 408123/2018-4.

1



In the unconstrained case (i.e., C =Ω), the Gauss-Newton method and its variations are the most efficient
methods known to solve (1). If F ′(x) is injective and has closed image for all x ∈ Ω, the standard Gauss-
Newton method generates a sequence {xk} as follows: Given an initial point x0 ∈Ω, define

xk+1 = xk +Sk, F ′(xk)
∗F ′(xk)Sk =−F ′(xk)

∗F(xk), k = 0,1, . . . ,

where A∗ denotes the adjoint of the operator A. Works dealing with the convergence of unconstrained
Gauss-Newton methods include, for example, [9, 10, 14, 20].

On the other hand, when F ′(x) is injective and has closed image for all x ∈ Ω, in order to solve the
harder (constrained) case, a proximal Gauss-Newton method for solving a more general class of constrained
nonlinear least squares problems was proposed in [26]. The proximal Gauss-Newton method specified for
(1) generates a sequence {xk} defined as

xk+1 = PHk
C (xk− [F ′(xk)

∗F ′(xk)]
−1F ′(xk)

∗F(xk)), k = 0,1, . . . , (2)

where PHk
C is the projection operator with respect to the metric defined by the operator Hk := F ′(xk)

∗F ′(xk),
i.e., for every y ∈ X,

PHk
C (y) = argminx∈C

1
2
‖x− y‖2

Hk
. (3)

Under the assumption that F ′ is Lipschitz continuous, local convergence results of the proximal Gauss-
Newton method were established in [26]. Moreover, some numerical experiments were presented showing
the effectiveness of the method. A regularized version and some local convergence results under a more
general condition on F ′ of the proximal Gauss-Newton method were also studied in [13] and [3], respec-
tively. It is worth pointing out that different algorithms have been proposed and studied in the literature for
solving (1). Strategies based on sequential quadratic programming, quasi-Newton and trust-region methods
have been used; see, for instance, [21, 22, 25].

Depending on the application, the exact projection in (3) can be extremely difficult to obtain. Conse-
quently, the first goal of this paper is to propose an extension of the algorithm in (2) in which inexact projec-
tions can be admitted. Toward this goal, we introduce a concept of approximate projection which, if neces-
sary, can be efficiently computed by an iterative method; see Definition 1 and the remarks after it. Hence, the
first method to be proposed here basically consists of computing the unconstrained Gauss-Newton step, and
then an approximate projection of it, with respect to the metric defined by Hk = F ′(xk)

∗F ′(xk) onto C. From
the theoretical viewpoint, we provide an estimate of the convergence radius, for which well-definedness and
convergence of the method are ensured. Furthermore, results on its convergence rates are also established.
Our analysis is done by using a majorant condition, which allows us to study convergence results of Newton
and Gauss-Newton methods in a unified way; see, for example, [9, 10, 14]. Thus, our local analysis cov-
ers two large families of nonlinear functions, namely, one satisfying a Lipschitz condition and another one
satisfying a Smale condition, which includes a substantial class of analytic functions.

Another issue in [26] is that no globalization strategy was considered. However, as it is well-known,
strategies of globalization become, in general, more robustness methods. Therefore, the second goal of this
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paper is to propose a global version of our first method. Our globalization technique is based on the efficient
nonmonotone line search in [18]. As has been reported by many authors, the nonmonotone strategy has
been shown more efficient due to the fact that enforcing monotonicity of the function values may make the
method converge slower. Under mild assumptions, we prove that any accumulation point of the sequence
generated by our global method is a stationary point of (1).

In order to illustrate the robustness and effectiveness of the new schemes, we report some numerical
experiments on a set of box- and polyhedral-constrained nonlinear systems and compare their performances
with the proximal Gauss-Newton method in [26]. In the box-constrained case, we also compare perfor-
mances of the new methods with the inexact Gauss–Newton trust-region method in [25].

The organization of the paper is as follows. In Section 2, we list some notations and basic results
used in our presentation. A concept of approximate projection and some of its properties are discussed in
Subsection 2.1. Section 3 describes the Gauss-Newton method with approximate projections (GNM-AP)
and presents its main local convergence theorem, whose proof is postponed to Subsection 3.1. Also in
Section 3, two applications of the main theorem are presented. In Section 4, we propose and analyze a
global version of the GNM-AP. Finally, Section 5 presents some numerical experiments of the proposed
schemes.

2 Notation and preliminary results

This section presents some definitions, notation and basic results used in this paper.
The open ball in X with center a and radius r is denoted by B(a,r). For simplicity, given x ∈ X, we use

the short notation
σ(x) := ‖x− x∗‖.

Denote D+ f (0) as the left-hand derivative of a convex function f : [0, R)→ R. We use L(X,Y) to denote
the space of bounded linear operators from X to Y and IX corresponds to the identity operator on X. If
A∈ L(X,Y), then Ker(A) and im(A) are the kernel and image of A, respectively, and A∗ its adjoint operator.
Let H : X→ X be a continuously, positive definite and self-adjoint, bounded from below and, therefore,
invertible operator. Then, we have a new scalar product on X by setting 〈x,z〉H = 〈x,Hz〉. Hence, the
corresponding induced norm ‖.‖H is equivalent to the given norm on X, since the following inequalities
hold

1
‖H−1‖

‖x‖2 ≤ ‖x‖2
H ≤ ‖H‖‖x‖2. (4)

Let A ∈ L(X,Y) with a closed image. The Moore-Penrose inverse of A is the linear operator A† ∈ L(Y,X)
which satisfies:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

From definition of the Moore-Penrose inverse, it is easy to see that

A†A = IX−ΠKer(A), AA† = Πim(A), (5)
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where ΠE denotes the projection of X onto subspace E.
If A is injective or A∗A is invertible in L(X,X), then

A† = (A∗A)−1A∗, A†A = IX, ‖A†‖2 = ‖(A∗A)−1‖. (6)

We end this section by recalling that a point x∗ ∈C is a stationary point of (1) iff

〈F ′(x∗)∗F(x∗),x− x∗〉 ≥ 0, ∀ x ∈C. (7)

2.1 Approximate projections

In this section, we introduce a concept of approximate projection and establish some useful properties,
which will be fundamental in the course of this work. It is worth pointing out that for some sets, computing
the exact projection onto them can be extremely difficult.

Definition 1. Let H : X→ X be a self-adjoint and positive definite operator. For given x ∈ X and ε≥ 0, we
say that P̃H

C (x) is an ε–approximate projection of x onto C iff

P̃H
C (x) ∈C and 〈x− P̃H

C (x),y− P̃H
C (x)〉H ≤ ε, ∀ y ∈C. (8)

If necessary (depending on definitions of C and H), an iterative method can be used in order to obtain
an approximate projection in the sense of Definition 1; for example, when C is bounded, one can use the
conditional gradient method [8, 12]. Indeed, given z0 ∈ C, the conditional gradient method, applied to
miny∈C ‖y− x‖2

H/2, generates a sequence {z j} ⊂C, where z j+1 = z j +α j(z̄ j− z j), with α j ∈ (0,1), and z̄ j

is the solution of subproblem
min 〈z j− x,z− z j〉H
s.t. z ∈C.

(9)

If this procedure is stopped when
〈z j− x, z̄ j− z j〉H ≥−ε,

then condition (8) holds with P̃H
C (x) = z j.

Note that, if P̃H
C (x) is a zero–approximate projection of y onto C, then (8) implies that it is the unique

exact solution for the generalized projection problem

min
y∈C

1
2
‖y− x‖2

H .

We will denote this unique exact projection by PH
C (x). It is easy to prove that the operator PH

C (·) is nonex-
pansive in the norm ‖ · ‖H , i.e.

‖PH
C (x)−PH

C (x̂)‖H ≤ ‖x− x̂‖H , x, x̂ ∈ X. (10)
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Moreover, for every x ∈ X and ε≥ 0, the following relationship between PH
C and P̃H

C holds

‖P̃H
C (x)−PH

C (x)‖H ≤
√

ε. (11)

Indeed, since PH
C (x) ∈C and P̃H

C (x) ∈C, it follows from Definition (1) that

〈P̃H
C (x)− x, P̃H

C (x)−PH
C (x)〉H ≤ ε, 〈x−PH

C (x), P̃H
C (x)−PH

C (x)〉H ≤ 0

The statement follows now by adding the last two inequalities. In Figure (1), an admissible approximation
of PH

C (x) with H ≡ IX is depicted.

Figure 1: ε–approximate projection

Note also that PH∗
C (x∗−F ′(x∗)†F(x∗)) = x∗ iff x∗ is a stationary point of (1) (i.e. 〈F ′(x∗)∗F(x∗),x−x∗〉 ≥

0, for all x ∈ C). In order to investigate the convergence of the method to be proposed here, we need to
establish some relationships between exact and inexact projections when H varies.

Lemma 1. Let H and H∗ be the two continuous, self-adjoint and positive definite operators on X. Then,

‖PH
C (x)−PH∗

C (x)‖H ≤ ‖H−1‖1/2‖(H−H∗)(P
H∗
C (x)− x)‖, ∀x ∈ X.

Proof. Denote z = PH
C (x) and ẑ = PH∗

C (x). Hence, it follows from Definition (1) that

〈H(z− x), ẑ− z〉 ≥ 0, 〈H∗(ẑ− x),z− ẑ〉 ≥ 0. (12)

Combining the last two inequalities, we obtain

〈H(z− ẑ),z− ẑ〉 ≤ 〈(H∗−H)(ẑ− x),z− ẑ〉,

which, combined with Cauchy-Schwarz inequality, yields

‖z− ẑ‖2
H ≤ ‖(H−H∗)(ẑ− x)‖‖z− ẑ‖ ≤ ‖H−1‖1/2‖(H−H∗)(ẑ− x)‖‖z− ẑ‖H .
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Therefore, the desired inequality now follows from last one.

Lemma 2. Let H and H∗ be the two continuous, self-adjoint and positive definite operators on X. Then, for
every x, x̂ ∈ X and ε≥ 0, we have

‖P̃H
C (x)−PH∗

C (x̂)‖H ≤ ‖x− x̂‖H +‖H−1‖1/2‖(H−H∗)(P
H∗
C (x̂)− x̂)‖+

√
ε.

Proof. By Lemma (1), we obtain

‖P̃H
C (x)−PH∗

C (x̂)‖H ≤ ‖P̃H
C (x)−PH

C (x)‖H +‖PH
C (x)−PH

C (x̂)‖H +‖PH
C (x̂)−PH∗

C (x̂)‖H

≤ ‖P̃H
C (x)−PH

C (x)‖H +‖PH
C (x)−PH

C (x̂)‖H +‖H−1‖1/2‖(H−H∗)(P
H∗
C (x̂)− x̂)‖.

Combining last inequality with (10) and (11), we find

‖P̃H
C (x)−PH∗

C (x̂)‖H ≤
√

ε+‖x− x̂‖H +‖H−1‖1/2‖(H−H∗)(P
H∗
C (x̂)− x̂)‖,

which is equivalent to the desired inequality.

3 The method and its local convergence

This section describes and investigates a Gauss-Newton method with approximate projections (GNM-
AP) for solving (1). Basically, the method consists of computing the Gauss-Newton step and then an ap-
proximate projection of it onto the feasible set C. The GNM-AP is formally described as follows.

Gauss-Newton method with approximate projections (GNM-AP)

Step 0 (Initialization). Let x0 ∈C, {θk} ⊂ [0,∞) be given, and set k = 0.

Step 1 (Gauss-Newton step). Compute sk ∈ X and yk ∈ X such that

F ′(xk)
∗F ′(xk)sk =−F ′(xk)

∗F(xk), yk = xk + sk. (13)

Step 2 (Computation of new iterative). Define Hk = F ′(xk)
∗F ′(xk). Compute xk+1 ∈C such that

〈yk− xk+1,x− xk+1〉Hk ≤ εk := θ
2
k‖xk+1− xk‖2

Hk
, ∀ x ∈C, (14)

i.e., xk+1 is an εk–approximate projection of yk onto C.

Step 3 (Termination criterion and update). If xk+1 = xk, then stop; Otherwise, set k← k+ 1 and go to
step 1.
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end

Remark 1. (i) Since the Gauss-Newton step yk may be infeasible for the constraint set C, it is necessary to
compute an εk–approximate projection of it onto C. As already mentioned, such an approximate projection
can be efficiently computed, for example, by the conditional gradient method when C is bounded. Indeed, we
can apply the conditional gradient method to minx∈C

1
2‖x− yk‖2

Hk
in order to obtain a point xk+1 satisfying

(14). We refer the reader to [16, 17] for some implementations of the conditional gradient method for
computing approximate projections. (ii) In Step 3, if xk+1 = xk, it follows from Step 2 and (13) that

0≥ 〈yk− xk+1,x− xk+1〉Hk = 〈−[F
′(xk)

∗F ′(xk)]
−1F ′(xk)

∗F(xk),x− xk〉Hk = 〈−F ′(xk)
∗F(xk),x− xk〉,

for all x ∈C, i.e. xk is a stationary point of (1). (iii) The definition of xk+1 as an approximate projection of
the unconstrained Gauss-Newton step with respect to the norm ‖ · ‖Hk is essential in order to establish the
convergence of the method as well as its fast convergence rate. For example, if xk+1 in (14) is defined as

〈yk− xk+1,x− xk+1〉 ≤ εk := θ
2
k‖xk+1− xk‖2, ∀ x ∈C,

i.e., xk+1 is an approximate solution of minx∈C
1
2‖x− yk‖2, and Hk is not a multiple of IX, it is not even

possible to show that xk is a stationary point of (1) when xk+1 = xk.

In order to analyze GNM-AP, we suppose that following assumptions hold:

(A1) The point x∗ satisfies the first-order necessary condition for (7), i.e. 〈F ′(x∗)∗F(x∗),x−x∗〉 ≥ 0, for all
x ∈C, and F ′(x∗) is injective;

(A2) The sequence {θk} satisfies θk ≤ θ̄ for all k ≥ 0, where θ̄ ∈ [0,1).

For simplicity, let us consider the following constants

c := ‖F(x∗)‖, β := ‖F ′(x∗)†‖, κ := β
∥∥F ′(x∗)

∥∥ δ := sup{t ∈ [0,R) : B(x∗, t)⊂Ω} . (15)

where R > 0 is a given scalar.
We first state a local convergence theorem for GNM-AP under a majorant condition. For technical

reasons and for the convenience of the reader, the proof of the next theorem will be given in next subsection.

Theorem 3. Suppose that there exists a continuously differentiable function f : [0, R)→ R such that

β
∥∥F ′(x)−F ′(x∗+ τ(x− x∗))

∥∥≤ f ′ (σ(x))− f ′ (τσ(x)) , (16)

where x ∈ B(x∗,δ), τ ∈ [0,1] and σ(x) = ‖x− x∗‖, and

h1) f (0) = 0 and f ′(0) =−1;
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h2) f ′ is convex and strictly increasing;

h3) cβ((1+
√

2)κ+1)D+ f ′(0)+κθ̄ < 1− θ̄.

Let be given positive constants ν := sup{t ∈ [0,R) : f ′(t)< 0} ,

ρ := sup

{
t ∈ (0,ν) :

[ f ′(t)+1+κ]
[
(1− θ̄)t f ′(t)− f (t)+ cβ(1+

√
2)( f ′(t)+1)

]
+ cβ [ f ′(t)+1]

(1− θ̄)t[ f ′(t)]2
< 1

}
, (17)

r := min{ρ, δ} .

Then GNM-AP with starting point x0 ∈C∩B(x∗,r)\{x∗} is well-defined, the generated {xk} is contained in
B(x∗,r)∩C, converges to x∗ and satisfies

‖xk+1− x∗‖< ‖xk− x∗‖ (18)

and

‖xk+1− x∗‖ ≤
[ f ′(σ(x0))+1+κ] [σ(x0) f ′(σ(x0))− f (σ(x0))]

(1−θk)[σ(x0) f ′(σ(x0))]2
‖xk− x∗‖2

+

[
(1+
√

2)cβ [ f ′(σ(x0))+1]−θkσ(x0) f ′(σ(x0))
]
[ f ′(σ(x0))+1+κ]+ cβ [ f ′(σ(x0))+1]

(1−θk)σ(x0) [ f ′(σ(x0))]
2 ‖xk− x∗‖, (19)

for all k = 0,1, . . ..

Remark 2. (i) Since ‖xk− x∗‖< σ(x0) = ‖x0− x∗‖ (see (18)), it follows from (19) and (A2) that

‖xk+1− x∗‖ ≤

[
[ f ′(σ(x0))+1+κ]

[
(1− θ̄)σ(x0) f ′(σ(x0))− f (σ(x0))+ cβ(1+

√
2)( f ′(σ(x0))+1)

]
(1− θ̄)σ(x0)[ f ′(σ(x0))]2

+
cβ [ f ′(σ(x0))+1]

(1− θ̄)σ(x0)[ f ′(σ(x0))]2

]
‖xk− x∗‖

which, combined with (17) and the fact that x0 ∈C∩B(x∗,r)\{x∗}, implies that GNM-AP is linearly con-
vergent to x∗. (ii) Note that, if c = 0 and limsupk→+∞ θk = 0, then (19) implies that GNM-AP converges
quadratically to x∗. (iii) If scalar θ̄ in (A2) is equal to zero (in particular, θk = 0 for all k≥ 0), then iterative
xk+1 in Step 2 of GNM-AP corresponds to the exact projection PHk

C (yk). In this case, Theorem 3 is similar
to [9, Theorem 7], which is related to the Gauss-Newton method for solving unconstrained nonlinear least
squares problems.

Before specializing Theorem 3 for two important classes of functions, we present an example in which
all conditions of Theorem 3 hold. The following result, which gives a simpler condition to check than
condition (16) whenever the functions under consideration are twice continuously differentiable, is needed.
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Lemma 4. Let x∗ ∈ Ω and R > 0 be given, and assume that F is twice continuously differentiable on Ω. If
there exists a f : [0,R)→ R twice continuously differentiable and satisfying

β‖F ′′(x)‖6 f ′′(‖x− x∗‖), x ∈ B(x∗,R),

then F and f satisfy (16).

Proof. The proof follows the same pattern as outlined in [9, Lemma 22].

Example 1. Consider the constrained nonlinear least squares problem (1) with C = R3
+ and

F(x) =
9
50

(
‖x‖5/3x−64(3,2,

√
3)
)
.

Note that x∗ = 2(3,2,
√

3) is a stationary point of (1) in this case. Let us apply Theorem 3 for this instance.
First, from (15), we have c = 0, β = (25/1152)

√
137, κ = (48/25)β

√
82. Moreover, since the second

derivative of F is given by

F ′′(x)(v,v) =
9

50

[
−5

9
‖x‖−7/3〈x,v〉2x+

5
3
‖x‖−1/3‖v‖2x+

10
3
‖x‖−1/3〈x,v〉v

]
,

for every x,v ∈ R3 and x 6= 0, and F ′′(0) = 0, we obtain

‖F ′′(x)‖ ≤ ‖x‖2/3, x ∈ Rn,

or, equivalently,
β‖F ′′(x)‖6 f ′′(‖x− x∗‖), x ∈ Rn,

where f : [0,∞)→ R is given by

f (t) =
9
40

βt8/3− t.

Hence, it follows from Lemma 4 that F and f satisfy (16). In particular, as f (0) = 0, f ′(t) = (3β/5)t5/3−1,
f ′(0) =−1 and f ′′(t) = βt2/3 > 0, we obtain f satisfies h1 and h2. Therefore, if θ̄ < [1/(1+κ)]≈ 0.2 (i.e.,
h3 holds), it follows from Theorem 3 that GNM-AP with starting point x0 ∈ R3

+∩B(x∗,r)\{x∗}, where

r =

[
5(15κ+48−24θ̄(1+κ))−5

√
(24θ̄(1+κ)−15κ−48)2 +864(θ̄(1+κ)−1)

54β

]3/5

, (20)

is well-defined, the generated {xk} is contained in B(x∗,r)∩R3
+, converges to x∗ and satisfies

‖xk+1− x∗‖ ≤
5

8(1− θ̄)

[
9β2σ(x0)

7/3 +15βκσ(x0)
2/3

9β2σ(x0)10/3 +30βσ(x0)5/3 +5

]
‖xk− x∗‖2, k = 0,1, . . . .

9



For example, if θ̄ = 0.1, then the radius of convergence r in (20) is approximately equal to 1.

We next specialize Theorem 3 for two important classes of functions. In the first one, F ′ satisfies a
Lipschitz-like condition [14, 15, 19] and, in the second one, F is an analytic function satisfying a Smale
condition [27, 28].

Corollary 5. Suppose that there exists a L > 0 such that

λ =
[(1+

√
2)κ+1]cβL+κθ̄

(1− θ̄)
< 1, β

∥∥F ′(x)−F ′(x∗+ τ(x− x∗))
∥∥≤ L(1− τ)σ(x), (21)

where x ∈ B(x∗,δ), τ ∈ [0,1] and σ(x) = ‖x− x∗‖. Let be given the positive constant

r := min


4+κ−2θ̄(1+κ)+2c(1+

√
2)βL−

√[
4+κ−2θ̄(1+κ)+2c(1+

√
2)βL

]2
−8(1−λ)(1− θ̄)

2L
, δ

 .

Then GNM-AP with starting point x0 ∈C∩B(x∗,r)\{x∗} is well-defined, the generated {xk} is contained
in B(x∗,r)∩C, converges to x∗ and satisfies

‖xk+1− x∗‖< ‖xk− x∗‖ (22)

and

‖xk+1− x∗‖ ≤
κL+L2σ(x0)

2(1−θk)[1−Lσ(x0)]2
‖xk− x∗‖2 +

[(1+
√

2)κ+1]cβL+ c(1+
√

2)βL2σ(x0)

(1−θk)[1−Lσ(x0)]2
‖xk− x∗‖

+
θk(Lσ(x0)+ k)

(1−θk)[1−Lσ(x0)]
‖xk− x∗‖, ∀k = 0,1, . . . ,

Proof. It is immediate to prove that F , x∗ and f : [0,δ)→ R defined by f (t) = Lt2/2− t, satisfy inequality
(16), conditions h1 and h2. Since [(1+

√
2)κ+ 1]cβL+κθ̄ < 1− θ̄, the condition h3 also holds. In this

case, it is easy to see that the constants ν and ρ as defined in Theorem 3, satisfy

0 < ρ =
µ−
√

µ2−8(1− θ̄)(1−λ)

2L
≤ ν = 1/L,

where µ := 4+ κ− 2θ̄(1+ κ)+ 2c(1+
√

2)βL. As a consequence, 0 < r = min{δ, ρ}. Therefore, as F ,
r, f and x∗ satisfy all of the hypotheses of Theorem 3, taking x0 ∈C∩B(x∗,r)\{x∗} the statements of the
theorem follow from Theorem 3.

We next specialize Theorem (3) for the class of analytic functions satisfying a Smale condition.
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Corollary 6. Suppose that

γ := sup
n>1

β

∥∥∥∥∥F(n)(x∗)
n!

∥∥∥∥∥
1/(n−1)

<+∞ and 2γcβ((1+
√

2)κ+1)+κθ̄ < 1− θ̄.

Let constants a = γcβ, b = (1+
√

2)γcβ,

ρ̄ := inf
{

s ∈ (
√

2/2,1) : p(s) := ζs4 +ηs3 + ιs2 +(b−1)s+b < 0
}

(23)

where ζ :=−4+(κ+1)2θ̄, η := 1−κ+a+b(κ−1), and ι := 3+κ− (κ+1)θ̄+a+b(κ−1), and

r := min{(1− ρ̄)/γ, δ} .

Then GNM-AP with starting point x0 ∈C∩B(x∗,r)\{x∗} is well-defined, the generated {xk} is contained in
B(x∗,r)∩C, converges to x∗ and satisfies

‖xk+1− x∗‖< ‖xk− x∗‖ (24)

and

‖xk+1− x∗‖ ≤
γ
[
1+(κ−1)(1− γσ(x0))

2
]

(1−θk) [1−2(1− γσ(x0))2]2
‖xk− x∗‖2 +

cβ
[
1− (1− γσ(x0))

2
]
(1− γσ(x0))

2

(1−θk)σ(x0) [1−2(1− γσ(x0))2]2
‖xk− x∗‖

+

[
(1+
√

2)cβ(1− (1− γσ(x0))
2)−θkσ(x0)(1−2(1− γσ(x0))

2)
][

1+(κ−1)(1− γσ(x0))
2
]

(1−θk)σ(x0) [1−2(1− γσ(x0))2]2
‖xk− x∗‖, (25)

for all k = 0,1, . . . .

Proof. Consider the real function f : [0,1/γ)→ R defined by

f (t) =
t

1− γt
−2t.

It is straightforward to show that f is analytic and that

f (0) = 0, f ′(t) = 1/(1− γt)2−2, f ′(0) =−1, f ′′(t) = (2γ)/(1− γt)3, f n(0) = n!γ
n−1,

for n≥ 2. It follows from last equalities that f satisfies h1 and h2. Since 2γcβ((1+
√

2)κ+1)+κθ̄ < 1− θ̄,
condition h3 also holds. Now, note that

β‖F ′′(x)‖6 f ′′(‖x− x∗‖),

for all x ∈ B(x∗,1/γ)∩Ω, the proof of this fact follows the same pattern as outlined in [9, Lemma 21]. As

11



f ′′(t) = (2γ)/(1− γt)3, we conclude, from Lemma 4, that F and f satisfy (16) with R = 1/γ. In this case,

ν = (2−
√

2)/2γ < 1/γ.

Now, we will obtain the constant ρ as defined in Theorem 3. For simplicity, consider the following change
of variable s = 1− γt, which implies that t = (1− s)/γ. Moreover, if t satisfies 0 < t < ν = (2−

√
2)2γ, then√

2/2 < s < 1. Hence, to determine the constant ρ as defined in Theorem 3 is equivalent to determine the
constant s such that

ρ̄ := inf
{

s ∈ (
√

2/2,1) : p(s) := ζs4 +ηs3 + ιs2 +(b−1)s+b < 0
}
,

where a = γcβ, b = (1+
√

2)γcβ, ζ := −4+(κ+ 1)2θ̄, η := 1−κ+ a+ b(κ− 1), and ι := 3+κ− (κ+
1)θ̄+a+b(κ−1). Thus, taking into account the change of variable, we have ρ = (1− ρ̄)/γ and

r = min{(1− ρ̄)/γ, δ} .

Therefore, as F , r, f and x∗ satisfy all hypothesis of Theorem 3, taking x0 ∈C∩B(x∗,r)\{x∗}, the statements
of the theorem follow from Theorem 3.

We end this section by presenting a numerical example, adapted from Dedieu and Shub [5], in which all
conditions of Corollary 5 hold.

Example 2. Let F : R→ R2 such that F(x) = (x,x2 +a)∗, where a ∈ R is given, and consider

min
x∈[−2,2]

‖F(x)‖2 = x4 +(2a+1)x2 +a2. (26)

Note that x∗ = 0 is a stationary point of (26). Let us apply Corollary 5 for this instance. First, from (15), we
have c = |a|, β = 1, κ = 1. Moreover, since β‖F ′(x)−F ′(τx)‖= (1−τ)2|x|, for all x ∈R and τ ∈ [0,1], we
obtain the Lipschitz-Like constant L is 2. Therefore, if 2[(2+

√
2)|a|+ θ̄]< 1 (i.e., the first inequality in (21)

holds), it follows from Corollary 5 that GNM-AP with starting point x0 ∈ [−2,2]∩B(x∗,r)\{x∗}, where

r =
5−4θ̄+4|a|(1+

√
2)−

√[
5−4θ̄+4|a|(1+

√
2)
]2
−8(1−2θ̄−2(2+

√
2)|a|)

4
, (27)

is well-defined, the generated {xk} is contained in B(x∗,r)∩ [−2,2], converges to x∗ and satisfies

‖xk+1− x∗‖ ≤
1+2σ(x0)

(1− θ̄)[1−2σ(x0)]2
‖xk− x∗‖2 +

2|a|(2+
√

2+2(1+
√

2)σ(x0))

(1− θ̄)[1−2σ(x0)]2
‖xk− x∗‖

+
θ̄(1+2σ(x0))

(1− θ̄)[1−2σ(x0)]
‖xk− x∗‖, ∀k = 0,1, . . . ,

12



For example, if a = 0 and θ̄ = 0.1, then the radius of convergence r in (27) is approximately equal to 0.2.

3.1 Proof of Theorems 3

Our goal in this subsection is to prove Theorem 3. To this end, we first present some auxiliary results,
which establish positiveness of the constants δ, ν and ρ, as well as some useful relationships between the
majorant function and the nonlinear function F .

First of all, note that constant δ in (15) is positive, because Ω is an open set and x∗ ∈Ω.

Proposition 7. The constant ν as in Theorem (3) is positive and f ′(t) < 0 for all t ∈ (0,ν). Furthermore,
the following functions defined on the interval (0, ν)

t 7→ − 1
f ′(t)

, t 7→ − [ f ′(t)+1+κ]

f ′(t)
, t 7→ [t f ′(t)− f (t)]

t2 , t 7→ f ′(t)+1
t

, (28)

are positive and increasing.

Proof. First, as f ′ is continuous in (0,R) and f ′(0) = −1, there exists ε > 0 such that f ′(t) < 0 for all
t ∈ (0,ε). Hence, ν > 0. Moreover, using h2 and the definition of ν, it follows that f ′(t)< 0 for all t ∈ (0,ν).
Note now that the first two functions in (28) are positive and increasing due to the facts that −1 < f ′(t)< 0,
for all t ∈ [0,ν), and f ′ is strictly increasing. Finally, for the proofs that the last two functions in (28) are
positive and increasing, see items ii and iii of [9, Proposition 10].

We next prove, in particular, that constant ρ in (17) is positive.

Proposition 8. The constant ρ is positive and there holds

[ f ′(t)+1+κ]
[
(1− θ̄)t f ′(t)− f (t)+ cβ(1+

√
2)( f ′(t)+1)

]
+ cβ [ f ′(t)+1]

(1− θ̄)t[ f ′(t)]2
< 1, t ∈ (0, ρ). (29)

Proof. Using h1 and some algebraic manipulation, we obtain

t f ′(t)− f (t)
t

=

[
f ′(t)− f (t)− f (0)

t−0

]
,

f ′(t)+1
t

=
f ′(t)− f ′(0)

t−0
,

which, combined with the fact that f ′(0) =−1, yields

lim
t→0

[t f ′(t)− f (t)]/t = 0, lim
t→0

[ f ′(t)+1]/t = D+ f ′(0), (30)

where the existence of the right derivative D+ f ′(0) is guaranteed due to the fact that f ′ is convex. Note now
that equation (29) is equivalent to

[ f ′(t)+1+κ] [t f ′(t)− f (t)]
(1− θ̄)[t f ′(t)]2

t− θ̄ [ f ′(t)+1+κ]

(1− θ̄) f ′(t)
+

cβ(1+
√

2) [ f ′(t)+1+κ] ( f ′(t)+1)
(1− θ̄)t[ f ′(t)]2

+
cβ [ f ′(t)+1]
(1− θ̄)t[ f ′(t)]2

. (31)

13



Hence, using f ′(0) =−1, it follows from (31) and (30) that

lim
t→0

[
[ f ′(t)+1+κ]

[
(1− θ̄)t f ′(t)− f (t)+ cβ(1+

√
2)( f ′(t)+1)

]
+ cβ [ f ′(t)+1]

(1− θ̄)t[ f ′(t)]2

]

=
κθ̄+ cβ(1+

√
2)κD+ f ′(0)+ cβD+ f ′(0)
(1− θ̄)

=
cβ

[
(1+
√

2)κ+1
]

D+ f ′(0)+κθ̄

(1− θ̄)
.

Therefore, since (h3) implies that [cβ[(1+
√

2)κ+1]D+ f ′(0)+κθ̄]/[(1− θ̄)] < 1, we conclude that there
exists an ε > 0 such that

[ f ′(t)+1+κ]
[
(1− θ̄)t f ′(t)− f (t)+ cβ(1+

√
2)( f ′(t)+1)

]
+ cβ [ f ′(t)+1]

(1− θ̄)t[ f ′(t)]2
< 1, t ∈ (0,ε),

So, ε≤ ρ, which proves the first statement.
Again, since (29) is equivalent to (31), the proof of the last part of proposition trivially follows from

definition of ρ and last part of Proposition (7).

The next two lemmas present some useful relationships between operator F and majorant function f .

Lemma 9. Let x ∈Ω. If σ(x)< min{ν,δ}, then following statements hold:

i) β‖F(x∗)− [F(x)+F ′(x)(x∗− x)]‖ ≤ f (0)− [ f (σ(x))+ f ′(σ(x))(0−σ(x))] := e f (σ(x),0);

ii) the linear operator H(x) = F ′(x)∗F ′(x) is invertible and

‖F ′(x)†‖ ≤ −β

f ′(σ(x))
, ‖F ′(x)†−F ′(x∗)†‖< −

√
2β[ f ′(σ(x))+1]

f ′(σ(x))
.

In particular, H(x) = F ′(x)∗F ′(x) is invertible in B(x∗,r).

Proof. The proof follows the pattern of the proofs of Lemmas 13 and 14 in [9] (see also Lemma 7 in
[15]).

Lemma 10. Let x ∈Ω. If σ(x)< min{ν,δ}, then the following inequalities hold:

i) ‖H(x)‖1/2 ≤ [ f ′(σ(x))+1+κ]/β;

ii) ‖H(x)−1‖1/2 ≤−β/[ f ′(σ(x))];

iii) β‖(H(x)−H(x∗))F ′(x∗)†‖ ≤ ( f ′(σ(x))+2+κ)( f ′(σ(x))+1),

where H(x) is defined as in Lemma 9(ii).

14



Proof. (i) Using inequality in (16) and definition of κ in (15), we have

β‖F ′(x)‖ ≤ β‖F ′(x)−F ′(x∗)‖+β‖F ′(x∗)‖ ≤ f ′(σ(x))+1+κ. (32)

As ‖H(x)‖1/2 = ‖F ′(x)∗F ′(x)‖1/2 = ‖F ′(x)‖, the desired inequality follows.
(ii) To show item ii, use the definition of H, the last inequality in (6) and Lemma 9(ii).
(iii) Note that the definition of H(x), some algebraic manipulations and (5) gives

β‖(H(x)−H(x∗))F ′(x∗)†‖= β‖F ′(x)∗(F ′(x)−F ′(x∗))F ′(x∗)† +(F ′(x)−F ′(x∗))∗Πim(F ′(x∗))‖
≤ (‖F ′(x)‖‖F ′(x∗)†‖+1)β‖F ′(x)−F ′(x∗)‖,

which, combined with definition of β in (15) and inequalities in (16) and (32), yields the desired inequality.

Lemma 9 implies that H is invertible for any x ∈ B(x∗,r) and hence F ′(x)† and P̃H
C (x−F ′(x)†F(x)) are

well-defined in this region. Therefore, since the starting point x0 ∈C∩B(x∗,r), we have x1 is well-defined,
but we do not show that x1 ∈C∩B(x∗,r) and, therefore, if the next iteration x2 will be well-defined. In the
next lemma, we ensure that sequence {‖xk−x∗‖} is strictly decreasing and, hence, that {xk} is well-defined
and contained in C∩B(x∗,r).

Lemma 11. Let xk ∈C∩B(x∗,r). Then, for every k ≥ 0,

‖xk+1− x∗‖ ≤
[ f ′(σ(xk))+1+κ] [σ(xk) f ′(σ(xk))− f (σ(xk))]

(1−θk) [σ(xk) f ′(σ(xk))]
2 ‖xk− x∗‖2

+
[ f ′(σ(xk))+1+κ]

[
(1+
√

2)cβ [ f ′(σ(xk))+1]−θkσ(xk) f ′(σ(xk))
]
+ cβ [ f ′(σ(xk))+1]

(1−θk)σ(xk) [ f ′(σ(xk))]
2 ‖xk− x∗‖. (33)

As a consequence,
‖xk+1− x∗‖< ‖xk− x∗‖. (34)

Proof. Since x∗ is a stationary point of (1) (see (A1)), we trivially have PH∗
C (x∗−F ′(x∗)†F(x∗)) = x∗. Hence,

it follows from Lemma 2 with x = xk−F ′(xk)
†F(xk), x̂ = x∗−F ′(x∗)†F(x∗) and ε = θ2

k‖xk− xk+1‖2
Hk

that

‖P̃Hk
C (xk−F ′(xk)

†F(xk))− x∗‖Hk ≤ ‖H
−1
k ‖

1/2‖(H∗−Hk)(F ′(x∗)†F(x∗))‖
+‖xk−F ′(xk)

†F(xk)− x∗+F ′(x∗)†F(x∗)‖Hk +θk‖xk− xk+1‖Hk .

For simplicity, the notation defines the following terms:

A(xk,x∗) = ‖xk−F ′(xk)
†F(xk)− x∗+F ′(x∗)†F(x∗)‖Hk (35)

and
B(xk,x∗) = ‖H−1

k ‖
1/2‖(H−H∗)F ′(x∗)†‖‖F(x∗)‖. (36)
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So, from the three latter inequalities, we obtain

‖xk+1− x∗‖Hk ≤ A(xk,x∗)+B(xk,x∗)+θk‖xk− xk+1‖Hk .

Hence, since ‖xk− xk+1‖Hk ≤ ‖xk+1− x∗‖Hk +‖Hk‖1/2‖xk− x∗‖, we obtain

(1−θk)‖xk+1− x∗‖Hk ≤ A(xk,x∗)+B(xk,x∗)+θk‖Hk‖1/2‖xk− x∗‖.

Since θk < 1, for all k ≥ 0, (see (A2)), the last inequality and (4) imply that

‖xk+1− x∗‖ ≤
‖H−1

k ‖1/2

(1−θk)
A(xk,x∗)+

‖H−1
k ‖1/2

(1−θk)
B(xk,x∗)+

θk
[
‖H−1

k ‖‖Hk‖
]1/2

(1−θk)
‖xk− x∗‖. (37)

Now, we will obtain upper bounds of A(xk,x∗) and B(xk,x∗). First, some algebraic manipulations and the
second equality in (6) yield

‖xk−F ′(xk)
†F(xk)− x∗+F ′(x∗)†F(x∗)‖

=‖F ′(xk)
†[F ′(xk)(xk− x∗)−F(xk)+F(x∗)]+(F ′(x∗)†−F ′(xk)

†)F(x∗)‖
≤‖F ′(xk)

†‖‖F(x∗)−
[
F(xk)+F ′(xk)(x∗− xk)

]
‖+‖F ′(x∗)†−F ′(xk)

†‖‖F(x∗)‖.

Combining last inequality, Lemma 9 and definition of c in (15), we have

‖xk−F ′(xk)
†F(xk)− x∗+F ′(x∗)†F(x∗)‖=

e f (σ(xk),0)
− f ′(σ(xk))

+

√
2cβ[ f ′(σ(xk))+1]
− f ′(σ(xk))

,

which, combined with (35), the fact that ‖ · ‖Hk ≤ ‖Hk‖1/2‖ · ‖ and Lemma 10(i), yields

A(xk,x∗)≤ ‖Hk‖1/2‖xk−F ′(xk)
†F(xk)− x∗+F ′(x∗)†F(x∗)‖

≤ ( f ′(σ(xk))+1+κ)

−β f ′(σ(xk))

(
e f (σ(xk),0)+

√
2cβ[ f ′(σ(xk))+1]

)
. (38)

On the other hand, from definition in (36) and Lemma 10(ii)–(iii), we have

B(xk,x∗)≤
c

− f ′(σ(xk))
( f ′(σ(xk))+2+κ)( f ′(σ(xk))+1). (39)
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Hence, using (37)–(39) and Lemma (10)(i)–(ii), we obtain

‖xk+1− x∗‖ ≤
[ f ′(σ(xk))+1+κ]e f (σ(xk),0)+(1+

√
2)cβ [ f ′(σ(xk))+1]2

(1−θk) [ f ′(σ(xk))]
2

+
cβ

[
(1+
√

2)κ+1
]
[ f ′(σ(xk))+1]

(1−θk) [ f ′(σ(xk))]
2 − θk( f ′(σ(xk))+1+κ)

(1−θk) f ′(σ(xk))
σ(xk),

which, combined with definition of e f (σ(xk),0) in Lemmas 9(i) and h1, proves (33).
Now, using θk < θ̄, for all k ≥ 0, (see (A2)), we obtain that the right-hand side of (33) is equivalent to[
[ f ′(σ(xk))+1+κ]

[
(1− θ̄)σ(xk) f ′(σ(xk))− f (σ(xk))+ cβ(1+

√
2)( f ′(σ(xk))+1)

]
+ cβ [ f ′(σ(xk))+1]

(1− θ̄)σ(xk) [ f ′(σ(xk))]
2

]
σ(xk).

Therefore, as xk ∈C∩B(x∗,r)/{x∗}, it follows from Proposition 8 with t = σ(xk) that the quantity in the
bracket above is less than one and hence (34) follows.

Proof of Theorem (3): Since x0 ∈ C ∩B(x∗,r)/{x∗}, combining Lemma (9)(ii), inequality (34) and an
induction argument, we have that (18) holds and {xk} is well-defined and remains in C∩B(x∗,r). Our goal
is now to show that {xk} converges to x∗. Using the second part of Lemma (11), we find

σ(xk) = ‖xk− x∗‖< ‖x0− x∗‖= σ(x0), k = 1,2 . . . . (40)

Hence, by combining (33) with last part of Proposition (7), we obtain

‖xk+1− x∗‖ ≤
[ f ′(σ(x0))+1+κ] [σ(x0) f ′(σ(x0))− f (σ(x0))]

(1−θk)[σ(x0) f ′(σ(x0))]2
‖xk− x∗‖2− θk( f ′(σ(x0))+1+κ)

(1−θk) f ′(σ(x0))
‖xk− x∗‖

+
(1+
√

2)cβ [ f ′(σ(x0))+1+κ] [ f ′(σ(x0))+1]+ cβ [ f ′(σ(x0))+1]

(1−θk)σ(x0) [ f ′(σ(x0))]
2 ‖xk− x∗‖, k = 0,1, . . . ,

which is equivalent to (19). Combining last inequality with (40) and (A2), we obtain

‖xk+1− x∗‖ ≤[
[ f ′(σ(x0))+1+κ]

[
(1− θ̄)σ(x0) f ′(σ(x0))− f (σ(x0))+ cβ(1+

√
2)( f ′(σ(x0))+1)

]
+ cβ [ f ′(σ(x0))+1]

(1− θ̄)σ(x0)[ f ′(σ(x0))]2

]
‖xk− x∗‖

for all k = 0,1, . . .. Hence, applying Proposition (8) with t = σ(x0), we conclude that {‖xk−x∗‖} converges
to zero. So, {xk} converges to x∗.
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4 Globalized method

We now present a globalized version of GNM-AP. The globalization strategy used here is based on the
non-monotone line search in [18]. Since the Gauss-Newton step can not be defined in some regions, our
global method uses, in these cases, the projected gradient step. The method is formally described as follows.

Global GNM-AP (G-GNM-AP)

Step 0 (Initialization). Let x0 ∈C, τ ∈ (0,1), an integer M ≥ 1 and {θk} ⊂ [0,∞) be given, and set k = 0.

Step 1 (Gauss-Newton or projected gradient step). If F ′(xk)
∗F ′(xk) is non-singular, then Hk =F ′(xk)

∗F ′(xk).
Otherwise, Hk = IX. Compute yk ∈ X such that

yk = xk−H−1
k F ′(xk)

∗F(xk).

Step 2 (Computation of the approximate projection). Compute P̃Hk
C (yk) ∈C such that

〈yk− P̃Hk
C (yk),x− P̃Hk

C (yk)〉Hk ≤ εk := θ
2
k‖P̃

Hk
C (yk)− xk‖2

Hk
, ∀ x ∈C, (41)

i.e., P̃Hk
C (yk) is an εk–approximate projection of yk onto C.

Step 3 (Backtracking). Define dk = P̃Hk
C (yk)− xk and Gmax = max{G(xk− j); 0≤ j ≤min{k,M−1}}. Set

α← 1.

Step 3.1 Set x+ = xk +αdk.

Step 3.2 If
G(x+)≤ Gmax + τα〈F ′(xk)

∗F(xk),dk〉, (42)

then αk = α, xk+1 = x+, and go to step 4. Otherwise, set α← α/2 and go to step 3.2.

Step 4 (Termination criterion and update). If xk+1 = xk, then stop; otherwise, set k← k+ 1 and go to
step 1.

end

The following theorem, which is an extension to the constrained case of [18, Theorem 1], summarizes
the convergence properties of G-GNM-AP method.

Theorem 12. Assume that there exist constants c,d ∈ R such that, for every k ≥ 0,

0 < c≤ λmin(Hk)≤ λmax(Hk)≤ d, (43)
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where λmin(Hk) and λmax(Hk) are, respectively, the smallest and largest eigenvalues of matrix Hk. Further-
more, assume that level set Ω0 := {x ∈C : G(x)≤G(x0)} is bounded and sequence {θk} satisfies θk ≤ θ̄ for
all k≥ 0, where θ̄ ∈ [0,1). Then, either G-GNM-AP stops at some stationary point xk or every limit point of
the generated sequence is stationary.

Proof. By definitions of dk and yk, and the inequality in (41), we have

〈−dk−H−1
k F ′(xk)

∗F(xk),x− xk +dk〉Hk ≤ θ
2
k‖dk‖2

Hk
, ∀k ≥ 0. (44)

If G-GNM-AP stops, then xk+1 = xk, which in turn implies that dk = 0. Hence, it follows from (44) that

〈−H−1
k F ′(xk)

∗F(xk),x− xk〉Hk ≤ 0, ∀x ∈C,

or, equivalently,
〈F ′(xk)

∗F(xk),x− xk〉 ≥ 0, ∀x ∈C,

i.e., xk is a stationary point of (1).
Our goal is now to show that every limit point of {xk} is a stationary point of (1). We first prove that dk

is a descent direction for the objective function G(x) = ‖F(x)‖2/2 at xk. From (43), we have Hk is positive
definite and

‖Hk‖ ≤ d and ‖H−1
k ‖ ≤

1
c
, ∀k ≥ 0. (45)

It follows from (44) with x = xk that

〈−dk−H−1
k F ′(xk)

∗F(xk),−dk〉Hk ≤ θ
2
k‖dk‖2

Hk
,

which, combined with (45) and the fact that θk ≤ θ̄ for all k ≥ 0, yields

〈F ′(xk)
∗F(xk),dk〉 ≤ −(1− θ̄

2)d‖dk‖2. (46)

Thus, if xk+1 6= xk (i.e., ‖dk‖ 6= 0), we obtain, from last inequality and the fact that θ̄ < 1, that dk is a
descent direction for G at xk. In particular, we can conclude that the backtracking process given in Step 3 is
well-defined, and, as a consequence, G-GNM-AP is also well-defined.

Let l(k) be an integer such that k−min{k,M−1} ≤ l(k)≤ k and

G(xl(k)) = max
0≤ j≤min{k,M−1}

G(xk− j).

Using the first part of the proof of the theorem in [18], it can be shown that {G(xl(k))} is monotonically
nonincreasing, and from the boundness of Ω0 we have that {G(xl(k))} admits a limit for k→ ∞. From (42),
it follows that, for k > M−1,

G(xl(k))≤ G(xl(l(k)−1))+ τα(l(k)−1)〈F ′(x(l(k)−1))
∗F(x(l(k)−1)),d(l(k)−1)〉. (47)
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Now, since αk > 0 and 〈F ′(xk)
∗F(xk),dk〉< 0, by taking limits in (47), it follows that

lim
k→∞

α(l(k)−1)〈F ′(x(l(k)−1))
∗F(x(l(k)−1)),d(l(k)−1)〉= 0.

Moreover, from (46), we conclude that

lim
k→∞

α(l(k)−1)‖d(l(k)−1)‖= 0,

and following the idea in the proof of [18, Theorem 1], we can prove that

lim
k→∞

αk‖dk‖= 0. (48)

Let x∗ ∈ C a limit point of {xk}. Relabel {xk} a subsequence converging to x∗. From (48), there exists a
subsequence of indices K ⊂ N such that: (i) lim

k∈K
‖dk‖= 0 or (ii) lim

k∈K
αk = 0.

Case (i): By (45) we can extract a subsequence of indices such K1 ⊂ K such that

lim
k∈K1

Hk = H∗

and H∗ also satisfies (43). Hence, we obtain, by continuity and definition of dk, that

‖P̃H∗
C (x∗−H−1

∗ F ′(x∗)∗F(x∗))− x∗‖= 0

or, equivalently,
P̃H∗

C (x∗−H−1
∗ F ′(x∗)∗F(x∗)) = x∗,

which, from Definition 1), implies that x∗ is a stationary point of (1).
Case (ii): Let αk chosen as in step 3.2 such as αk = ᾱk/2, where ᾱk was the last step that failed in (42), i.e.,

G(xk + ᾱkdk)> max
0≤ j≤min{k,M−1}

G(xk− j)+ τᾱk〈F ′(xk)
∗F(xk),dk〉 ≥ G(xk)+ τᾱk〈F ′(xk)

∗F(xk),dk〉. (49)

Now define sk = ᾱkdk. By the mean value theorem, there exists µk ∈ [0,1] such that the relation in (49) can
be written as

〈F ′(xk +µksk)
∗F(xk +µksk),sk〉= G(xk + sk)−G(xk)> τ〈F ′(xk)

∗F(xk),sk〉. (50)

On the other hand, by the fact that PHk
C (xk) = xk and Lemma (2) with ε = θ2

k‖dk‖2
Hk

, we have

‖dk‖Hk = ‖P̃
Hk
C (yk)− xk‖Hk = ‖P̃

Hk
C (yk)−PHk

C (xk)‖Hk ≤ ‖yk− xk‖Hk +θk‖dk‖Hk ,

which, combined with the fact that θk ≤ θ̄ < 1 for all k ≥ 0, (4), (45) and some algebraic manipulations,
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yields

‖dk‖ ≤
√

c‖dk‖Hk ≤
√

c
1−θk

‖H−1
k F ′(xk)

∗F(xk)‖Hk ≤
√

d
(1− θ̄)

√
c
‖F ′(xk)

∗F(xk)‖. (51)

Now as {xk} is bounded and G is continuously differentiable, we have {F ′(xk)
∗F(xk)} is bounded. There-

fore, {dk} is bounded. Hence, as sk = 2αkdk and limk∈K αk = 0, we obtain that sk goes to zero as k ∈ K goes
to infinity. So, from (50), we have

〈F ′(xk +µksk)
∗F(xk +µksk),

sk

‖sk‖
〉> τ〈F ′(xk)

∗F(xk),
sk

‖sk‖
〉. (52)

By taking limit in the last inequality as k ∈ K2 goes to infinity, where K2 ⊂ K is such that limk∈K2{sk/‖sk‖}
converges to s, we obtain (1− τ)〈F ′(x∗)∗F(x∗),s〉 ≥ 0. Since (1− τ)> 0, we have

〈F ′(x∗)∗F(x∗),s〉 ≥ 0. (53)

Now, as dk is a descent direction for G(x) at xk and sk = ᾱkdk, we find

〈F ′(xk)
∗F(xk),

sk

‖sk‖
〉< 0.

Hence, 〈F ′(x∗)∗F(x∗),s〉 ≤ 0, which, combined with (53), implies that 〈F ′(x∗)∗F(x∗),s〉 = 0. Using (46)
and definitions of sk, we have

〈F ′(xk)
∗F(xk),

sk

‖sk‖
〉 ≤ −(1− θ̄

2)d‖dk‖.

By (45) we can extract a subsequence of indices such K3 ⊂ K2 such that limk∈K3 Hk = H∗ and H∗ satisfying
(43). Therefore, by definition of dk and taking limit in the last inequality as k ∈ K3 goes to infinity, we have

0 = 〈F ′(x∗)∗F(x∗),s〉 ≤ −(1− θ̄
2)d‖P̃H∗

C (x∗−H−1
∗ F ′(x∗)∗F(x∗))− x∗‖,

which, combined with the fact θ̄< 1, yields x∗= P̃H∗
C (x∗−H−1

∗ F ′(x∗)∗F(x∗)). Therefore, from Definition 1),
we conclude that x∗ is a stationary point of (1).

5 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order to verify
the effectiveness of GNM-AP and G-GNM-AP methods. The algorithms were tested on some box- and
polyhedral-constrained nonlinear least squares problems. We took θk = 1/3, for every k, in both algorithms.
Moreover, the εk–approximate projection of point yk onto C was computed by the conditional gradient
method, which stopped when either the stopping criterion given in step 2 was satisfied or a maximum of 300
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iterations was performed. In order to avoid an excessive number of inner iterations, input εk was replaced by
max{θ2

k‖xk+1−xk‖2
Hk
,10−2}. Linear optimization subproblems in the conditional gradient method (see (9))

were solved via the MATLAB command linprog. Other initialization parameters of G-GNM-AP method
were set τ = 10−4 and M = 10. Nonmonotone parameter M = 10 was the best from {1,5,10,15,20,25} for
an initial small number of problems. For a comparison purpose, we also run the proximal Gauss-Newton
(Prox-GN) method in [26], which, applied to (1), corresponds to our GNM-AP method with exact projec-
tions (i.e., θk = 0 for every k). In the latter method, exact projections were computed by the MATLAB
command quadprog. In the box-constrained case, we also compare the performance of G-GNM-AP method
with the inexact Gauss–Newton trust-region algorithm (ITREBO) of [25]. ITREBO is an algorithm de-
signed for solving nonlinear least-squares problems with simple bounds. For GNM-AP, G-GNM-AP and
Prox-GN methods, we used the same termination condition ‖xk+1− xk‖Hk < 10−4, whereas in ITREBO we
used ‖PC(xk−∇ f (xk))− xk‖ < 10−4. For all algorithms, a failure was declared if the number of iterations
was greater than 300 or no progress was detected. The computational results were obtained using MATLAB
R2016a on a 2.4GHz Intel(R) i5 with 8GB of RAM and Windows 10 ultimate system.

5.1 Box-constrained nonlinear least squares problems

In this section, our aim is to illustrate the behavior of the algorithms to solve 23 problems of the form (1)
with C = {x ∈ Rn; c ≤ x ≤ d}, where c,d ∈ Rn; see Table (5.1). The first four problems were taken from
[26]. The others are originally unconstrained problems for which box constrains were added.

We firstly chose 10 initial points of the form x0(γ) = c+(γ/11)(d− c) for γ = 1,2, . . . ,10. We report
in Figure 2 the numerical results of GNM-AP, G-GNM-AP and Prox-GN methods for solving the 23 prob-
lems using performance profiles [7]. We adopted the CPU time as performance measurement. It is worth
pointing out that the efficiency is related to the percentage of problems for which the method was the fastest,
whereas robustness is related to the percentage of problems for which the method found a solution. In the
performance profile, efficiency and robustness can be accessed on the left and right extremes of the graphic,
respectively.

From Figure 2, we see that GNM-AP method was more robust and efficient in terms of saving time
than Prox-GN method. This fact illustrates the advantages of allowing inexactness in the calculation of
projections. On the other hand, we also see, as expected, that G-GNM-AP method was more robust than
the local methods. Its robustness rate was approximately 95%, whereas for GNM-AP (resp. Prox-GN) the
robustness rate was approximately 85% (resp. 71%).

Since our schemes and ITREBO use different stopping criteria, in order to provide a fair comparison,
we report in Table (5.1) the performance of G-GNM-AP and ITREBO with three initial point of the form
x0(γ) = c+0.25γ(d− c), where γ > 0, for solving the 23 box-constrained nonlinear least squares problems
aforementioned. As can be seen, G-GNM-AP and ITREBO successfully ended 60 and 51 times, respec-
tively, on a total of 69 runs. Moreover, G-GNM-AP ( resp. ITREBO) was faster in 31 (resp. 14) cases.
Therefore, we can say that our global scheme outperformed ITREBO for the instances considered.
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Table 1: Test problems

Problem Function(F(x)) and source n m Box
Pb 1 Rosenbrock [26, Problem 1] 2 2 As [26]
Pb 2 Osborne1 [26, Problem 3] 5 33 As [26]
Pb 3 Osborne2 [26, Problem 4] 11 65 As [26]
Pb 4 Twoeq6 [26, Problem 5] 2 2 As [26]
Pb 5 Freudenstein [23, Problem 2] 2 2 [1,5]
Pb 6 Powell badly scaled [23, Problem 3] 2 2 [0,9.106]
Pb 7 Brown badly scaled [23, Problem 4] 2 3 [0,106]
Pb 8 Beale [23, Problem 5] 2 3 [0,3]
Pb 9 Jennrich and Sampson [23, Problem 6] 2 10 [−2,1]
Pb 10 Bard [23, Problem 8] 3 15 [−10,1]
Pb 11 Gaussian [23, Problem 9] 3 15 [−1,1.02]
Pb 12 Box three-dimensional [23, Problem 12] 3 100 [0,10]
Pb 13 Powell singular [23, Problem 13] 4 4 [−3,3]
Pb 14 Biggs EXP6 [23, Problem 18] 6 10 [−1,10]
Pb 15 Penalty I [23, Problem 23] 4 5 [−10,1]
Pb 16 Penalty I [23, Problem 23] 10 11 [−10,1]
Pb 17 Variably dimensioned [23, Problem 25] 100 102 [−1,2]
Pb 18 Variably dimensioned [23, Problem 25] 450 452 [−1,2]
Pb 19 Trigonometric [23, Problem 26] 6 6 [−2,3]
Pb 20 Broyden tridiagonal [23, Problem 30] 10 10 [−2,2]
Pb 21 Broyden tridiagonal [23, Problem 30] 1000 1000 [−2,2]
Pb 22 Example 6.1.10 [11, Chap. 6] 1 2 [−10,20]
Pb 23 Example 10.2.4 [6, Chap. 10] 1 3 [−2,1]

5.2 Polyhedral-constrained nonlinear least squares problems

In this section, we are interested in solving 23 test problems of the form (1) with C = {x ∈ Rn; c≤ x≤
d, Ax ≤ b}, where c,d ∈ Rn, b ∈ Rm and A ∈ Rm×n. Our test problems are the box-constrained nonlinear
least squares problems of Subsection 5.1, for which randomly generated constraints Ax≤ b were added. In
this application, we considered 5 different initial points belonging to the feasible set C.

As in Subsection 5.1, we reported in Figure 3 numerical comparisons of the obtained results using per-
formance profiles. Illustrating again the advantages of allowing inexactness in the calculation of projections,
we observe, from Figure 3, that GNM-AP method was more robust and efficient in terms of saving time than
Prox-GN method. Moreover, G-GNM-AP was more robust than GNM-AP, which, on the other hand, was
more robust than Prox-GN method.

Finally, we conclude that the proposed schemes seems to be promising tools for solving box- and
polyhedral-constrained nonlinear least squares problems.
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Figure 2: Performance of G-GNM-AP, GNM-AP and Prox-GN methods

Figure 3: Performance of G-GNM-AP, GNM-AP and Prox-GN methods
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Table 2: Performance of G-GNM-AP and ITREBO

G-GNM-AP ITREBO G-GNM-AP ITREBO
Pb γ it/time/Fnorm it/time/Fnorm Pb γ it/time/Fnorm it/time/Fnorm

1 273/5.7e+0/1.5e-1 * 1 11/1.1e-2/2.7e-5 8/1.5e-2/3.8e-4
Pb 1 2 6/4.1e-3/1.3e-1 * Pb 13 2.5 10/7.9e-3/3.5e-5 7/1.1e-2/6.0e-4

3 5/3.9e-3/1.3e-1 * 3 11/1.2e-2/4.6e-5 8/1.4e-2/3.8e-4
1 12/9.1e-2/9.0e-2 * 1 186/7.8e-1/4.4e-1 7/1.5e-2/5.4e-1

Pb 2 2 13/1.0e-1/8.8e-2 * Pb 14 2 195/6.4e-1/4.4e-1 *
3 12/9.6e-2/9.0e-2 * 3 31/1.0e-1/4.2e-1 *
1 7/2.9e-2/6.8e-1 * 1 9/6.8e-3/7.9e-3 9/1.2e-2/7.9e-3

Pb 3 2 8/3.2e-2/6.8e-1 * Pb 15 2 8/3.6e-3/7.9e-3 8/9.7e-3/7.9e-3
3 11/4.6e-2/6.8e-1 * 3 7/3.2e-3/7.9e-3 6/8.6e-3/7.9e-3
1 11/6.0e-3/7.1e-5 * 1 9/6.1e-3/1.1e-2 11/1.4e-2/1.1e-2

Pb 4 2 12/6.5e-3/7.1e-5 * Pb 16 2 9/5.2e-3/1.1e-2 9/1.3e-2/1.1e-2
3 16/1.1e-2/1.0e-5 * 3 7/4.4e-3/1.1e-2 7/7.2e-3/1.1e-2
1 6/3.5e-3/3.5e-10 7/9.0e-3/1.2e-7 1 17/4.0e-2/9.1e-6 18/4.7e-2/4.8e-9

Pb 5 2 6/2.8e-3/2.6e-10 5/6.8e-3/5.3e-8 Pb 17 2 16/3.5e-2/7.7e-8 16/4.2e-2/8.6e-12
3 2/1.9e-3/0.0e+0 3/5.0e-3/1.8e-7 3 15/3.3e-2/7.7e-8 14/3.4e-2/4.6e-7
1 11/8.6e-3/9.8e-1 11/1.2e-2/9.8e-1 1 30/5.7e-1/9.9e-6 23/3.8e-1/6.1e-7

Pb 6 2 12/8.4e-3/9.8e-1 14/1.2e-2/9.8e-1 Pb 18 2 63/1.2e+0/9.5e-5 21/3.6e-1/8.7e-10
3 12/8.9e-3/9.8e-1 15/1.2e-2/9.8e-1 3 17/3.5e-1/9.9e-6 19/3.1e-1/4.9e-8
1 18/3.3e-2/0.0e+0 36/2.8e-2/0.0e+0 1 7/3.7e-3/5.3e-8 6/7.3e-3/2.2e-7

Pb 7 2 19/3.2e-2/0.0e+0 35/2.9e-2/2.2e+0 Pb 19 2 * 14/1.6e-2/1.6e-2
3 20/3.7e-2/0.0e+0 37/2.8e-2/1.6e+0 3 * 17/1.6e-2/1.6e-2
1 5/3.6e-3/6.0e-5 7/8.7e-3/2.4e-7 1 4/3.6e-3/9.1e-5 4/6.8e-3/3.4e-8

Pb 8 2 6/3.5e-3/6.0e-5 9/1.0e-2/7.2e-7 Pb 20 2 5/2.4e-2/4.5e-5 7/1.5e-2/1.3e-7
3 11/7.3e-3/6.4e-5 10/1.0e-2/7.8e-8 3 * 26/2.8e-2/1.1e+0
1 * 10/1.4e-2/1.1e+1 1 5/4.9e-1/1.0e-9 6/4.1e-1/6.9e-6

Pb 9 2 35/5.1e-1/1.1e+1 7/1.4e-2/1.1e+1 Pb 21 2 * 189/1.7e+1/9.6e+0
3 * 5/1.3e-2/1.1e+1 3 139/1.4e+1/1.2e+0 16/1.2e+0/1.0e+0
1 * * 1 6/2.3e-2/1.4e+0 6/5.8e-2/1.4e+0

Pb 10 2 * * Pb 22 2 7/2.4e-3/1.4e+0 7/9.4e-3/1.4e+0
3 * * 3 8/4.8e-3/1.4e+0 9/1.5e-2/1.4e+0
1 9/2.1e-2/1.0e-1 51/6.7e-2/1.0e-1 1 7/8.6e-3/8.7e-6 7/1.0e-2/7.6e-8

Pb 11 2 7/6.7e-3/1.0e-1 5/1.0e-2/1.0e-1 Pb 23 2 6/4.7e-3/1.9e-7 5/1.3e-2/7.6e-8
3 4/4.1e-3/1.0e-1 3/8.4e-3/1.0e-1 3 5/2.9e-3/1.9e-7 5/6.9e-3/7.6e-8
1 2/1.2e-2/1.7e-15 *

Pb 12 2.5 4/3.1e-2/6.0e-6 4/3.9e-2/1.3e-4
3 8/3.9e-2/4.2e-7 5/3.4e-2/5.8e-12

6 Final remark

In this paper, we proposed Gauss-Newton methods with inexact projections for solving constrained
nonlinear least squares problems. For the local method, we were able to show, under a majorant condition,
that the generated sequence converges locally linearly. In zero-residual problems, quadratic convergence

25



rate can be achieved with a stronger condition on the inexactness of the projections. As special cases of the
majorant condition, convergence results for the method with F ′ satisfying a Lipschitz-like condition and F
being an analytic function satisfying a Smale condition were also discussed. For the global method, under
suitable conditions, global convergence of the algorithm to a stationary point of the problem was established.
The numerical experiments showed that the new algorithms work quite well and compare favorably with the
proximal Gauss-Newton method in [26] and the inexact Gauss–Newton trust-region method in [25].
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