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Abstract

Pointwise and ergodic iteration-complexity results for the proximal alternating direction method
of multipliers (ADMM) for any stepsize in (0, (1 +

√
5)/2) have been recently established in the

literature. In addition to giving alternative proofs of these results, this paper also extends the
ergodic iteration-complexity result to include the case in which the stepsize is equal to (1+

√
5)/2.

As far as we know, this is the first ergodic iteration-complexity for the stepsize (1 +
√

5)/2 ob-
tained in the ADMM literature. These results are obtained by showing that the proximal ADMM
is an instance of a non-Euclidean hybrid proximal extragradient framework whose pointwise and
ergodic convergence rate are also studied.
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1 Introduction

This paper considers the following linearly constrained convex problem

inf{f(y) + g(s) : Cy +Ds = c} (1)

where S, Y and X are finite dimensional inner product spaces, f : Y → (−∞,∞] and g : S →
(−∞,∞] are proper closed convex functions, C : Y → X and D : S → X are linear operators,
and c ∈ X . Convex optimization problems with a separable structure such as (1) appear in many
applications areas such as machine learning, compressive sensing and image processing. A well-known
method that takes advantage of the special structure of (1) is the alternating direction method of
multipliers (ADMM).

Many variants of the ADMM have been considered in the literature; see, for example, [3, 5, 6,
7, 12, 13, 14, 16, 21, 26]. Here, we study the proximal ADMM [6, 8] which, recursively, computes a
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sequence {(sk, yk, xk)} as follows. Given (sk−1, yk−1, xk−1), the k-th triple (sk, yk, xk) is determined
as

sk = argmins

{
g(s)− 〈xk−1, Ds〉+

β

2
‖Cyk−1 +Ds− c‖2 +

1

2
〈s− sk−1, H(s− sk−1)〉

}
,

yk = argminy

{
f(y)− 〈xk−1, Cy〉+

β

2
‖Cy +Dsk − c‖2 +

1

2
〈y − yk−1, G(y − yk−1)〉

}
, (2)

xk = xk−1 − θβ [Cyk +Dsk − c]

where β > 0 is a penalty parameter, θ > 0 is a stepsize parameter, and H : S → S and G :
Y → Y are positive semidefinite self-adjoint linear operators. We refer to the subclass obtained
from (2) by setting (H,G) = (0, 0) to as the standard ADMM. Also, the proximal ADMM with
(H,G) = (τI − βD∗D,0) for some τ ≥ β‖D‖2 is known as the linearized ADMM or the split inexact
Uzawa method (see, e.g., [16, 33, 34]). It has the desirable feature that, for many applications, its
subproblems are much easier to solve or even have closed-form solutions (see [5, 16, 31, 32] for more
details).

Pointwise and ergodic iteration-complexity results for the proximal ADMM (2) for any θ ∈
(0, (1 +

√
5)/2) are established in [4, 13]. Our paper develops alternative pointwise and ergodic

iteration-complexity results for the proximal ADMM (2) based on a different but related termination
criterion. More specifically, a pointwise iteration-complexity is established for any θ ∈ (0, (1+

√
5)/2)

and an ergodic one is obtained for any θ ∈ (0, (1 +
√

5)/2]. Hence, our analysis of the ergodic case
includes the case θ = (1 +

√
5)/2 which, as far as we know, has not been established yet. Our

approach towards obtaining this extension is based on viewing the proximal ADMM as an instance
of a non-Euclidean hybrid proximal extragradient (HPE) framework whose (pointwise and ergodic)
complexity is studied and is then used to derive that of the proximal ADMM.

Previous related works. The ADMM was introduced in [9, 11] and is thoroughly discussed in
[1, 10]. To discuss complexity results about ADMM, we use the terminology weak pointwise or
strong pointwise bounds to refer to complexity bounds relative to the best of the k first iterates or
the last iterate, respectively, to satisfy a suitable termination criterion. The first iteration-complexity
bound for the ADMM was established only recently in [25] under the assumptions that C is injective.
More specifically, the ergodic iteration-complexity for the standard ADMM is derived in [25] for any
θ ∈ (0, 1] while a weak pointwise iteration-complexity easily follows from the approach in [25] for
any θ ∈ (0, 1). Subsequently, without assuming that C is injective, [16] established the ergodic
iteration-complexity of the proximal ADMM (2) with G = 0 and θ = 1 and, as a consequence, of the
split inexact Uzawa method [33]. Paper [15] establishes the weak pointwise and ergodic iteration-
complexity of another collection of ADMM instances which includes the standard ADMM for any θ ∈
(0, (1+

√
5)/2). A strong pointwise iteration-complexity bound for the proximal ADMM (2) with G =

0 and θ = 1 is derived in [17]. Finally, a number of papers (see for example [4, 5, 7, 12, 13, 14, 21, 26]
and references therein) have extended most of these complexity results to the context of the ADMM
class (2) as well as other ADMM classes.

The non-Euclidean HPE framework is a class of inexact proximal point methods for solving
the monotone inclusion problem which uses a relative (instead of summable) error criterion. The
proximal point method, proposed by Rockafellar [28], is a classical iterative scheme for solving
the latter problem. Paper [29] introduces an Euclidean version of the HPE framework. Iteration-
complexities of the latter framework are established in [23] (see also [24]). Generalizations of the
HPE framework to the non-Euclidean setting are studied in [12, 20, 30]. Applications of the HPE
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framework can be found for example in [19, 18, 22, 23, 24, 25].

Organization of the paper. Subsection 1.1 presents our notation and basic results. Section 2
describes the proximal ADMM and present its pointwise and ergodic convergence rate results whose
proofs are given in Section 4. Section 3 is devoted to the study of a non-Euclidean HPE framework.
This section is divided into two subsections, Subsection 3.1 introduces the framework and presents
its convergence rate bounds whose proofs are given in Subsection 3.2.

1.1 Notation and basic results

This subsection presents some definitions, notation and basic results used in this paper.
Let V be a finite-dimensional real vector space with inner product and associated norm denoted by

〈·, ·〉V and ‖·‖V , respectively. For a given self-adjoint positive semidefinite linear operator A : V → V,

the seminorm induced by A on V is defined by ‖ · ‖V,A = 〈A(·), ·〉1/2V . For an arbitrary seminorm ‖ · ‖
on V, its dual (extended) seminorm, denoted by ‖ · ‖∗, is defined as ‖ · ‖∗ := sup{〈·, v〉V : ‖v‖ ≤ 1}.

The following result gives some properties of ‖ · ‖∗V,A whose proof is omitted.

Proposition 1.1. Let A : V → V be a self-adjoint positive semidefinite linear operator. Then,
dom ‖ · ‖∗V,A = Im (A) and ‖A(·)‖∗V,A = ‖ · ‖V,A.

Given a set-valued operator T : V ⇒ V, its domain and graph are defined as DomT := {v ∈
V : T (v) 6= ∅} and Gr(T ) = {(v1, v2) ∈ V × V | v2 ∈ T (v1)}, respectively, and its inverse operator
T−1 : V ⇒ V is given by T−1(v2) := {v1 : v2 ∈ T (v1)}. The operator T is said to be monotone if

〈u1 − v1, u2 − v2〉 ≥ 0 ∀ (u1, u2), (v1, v2) ∈ Gr(T ).

Moreover, T is maximal monotone if it is monotone and there is no other monotone operator S such
that Gr(T ) ⊂ Gr(S). Given a scalar ε ≥ 0, the ε-enlargement T [ε] : V ⇒ V of a monotone operator
T : V ⇒ V is defined as

T [ε](v) := {v′ ∈ V : 〈v′ − v2, v − v1〉 ≥ −ε, ∀(v1, v2) ∈ Gr(T )} ∀v ∈ V. (3)

Recall that the ε-subdifferential of a convex function f : V → [−∞,∞] is defined by ∂εf(v) :=
{u ∈ V : f(v′) ≥ f(v)+〈u, v′ − v〉−ε ∀v′ ∈ V} for every v ∈ V. When ε = 0, then ∂0f(x) is denoted
by ∂f(x) and is called the subdifferential of f at x. The operator ∂f is trivially monotone if f is
proper. If f is a proper lower semi-continuous convex function, then ∂f is maximal monotone [27].
The domain of f is denoted by dom f and the conjugate of f is the function f∗ : V → [−∞,∞]
defined as

f∗(v) = sup
z∈V

(〈v, z〉 − f(z)) ∀v ∈ V.

2 Proximal ADMM and its convergence rate

In this section, we recall the proximal ADMM for solving (1) and present pointwise and ergodic
convergence rate results. The pointwise convergence rate considers the stepsize parameter in the
open interval (0, (

√
5 + 1)/2) while the ergodic one includes also the stepsize (

√
5 + 1)/2.

Throughout this section, we assume that:
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A1) the problem (1) has an optimal solution (s∗, y∗) and an associated Lagrange multiplier x∗, or
equivalently, the inclusion

0 ∈ T (s, y, x) :=

 ∂g(s)−D∗x
∂f(y)− C∗x
Cy +Ds− c

 (4)

has a solution (s∗, y∗, x∗);

A2) there exists x ∈ X such that (C∗x,D∗x) ∈ ri (dom f∗)× ri (dom g∗).

Next we state the proximal ADMM for solving the problem (1).

Proximal ADMM

(0) Let an initial point (s0, y0, x0) ∈ S × Y × X , a penalty parameter β > 0, a setpsize θ > 0, and
self-adjoint positive semidefinite linear operators H : S → S and G : Y → Y be given, and set
k = 1;

(1) compute an optimal solution sk ∈ S of the subproblem

min
s∈S

{
g(s)− 〈D∗xk−1, s〉S +

β

2
‖Cyk−1 +Ds− c‖2X +

1

2
‖s− sk−1‖2S,H

}
(5)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
f(y)− 〈C∗xk−1, y〉Y +

β

2
‖Cy +Dsk − c‖2X +

1

2
‖y − yk−1‖2Y,G

}
; (6)

(2) set
xk = xk−1 − θβ [Cyk +Dsk − c] (7)

and k ← k + 1, and go to step (1).

end

The proximal ADMM has different features depending on the choice of the operators H and G.
For instance, by taking (H,G) = (0, 0) and (H,G) = (τI − βD∗D,0) with τ > 0, it reduces to the
standard ADMM and the linearized ADMM, respectively. The latter method is related to the split
inexact Uzawa method (see, e.g., [16, 34]) and it basically consists of linearizing the quadratic term
(1/2)‖Cyk−1 + Ds − c‖2X in the standard ADMM and adding a proximal term (1/2)‖s − sk−1‖2S,H .
In many applications, the corresponding subproblem (5) for the linearized ADMM is much easier
to solve or even has a closed-form solution (see [16, 31, 32] for more details). We also mention
that depending on the structure of problem (1), other choices of H and G may be recommended;
see, for instance, Section 1.1 of [5]. It is worth pointing out that the condition A2 is used only to
ensure that the subproblems of ADMM as well as some variants have solutions, see for example [25,
Proposition 7.2] and [12, comments on page 16]. In particular, under this assumption it is possible
to show that the subproblems (5) and (6) have solutions.
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The next two results present pointwise and ergodic convergence rate bounds for the proximal
ADMM under the assumption that θ ∈ (0, (

√
5 + 1)/2) and θ ∈ (0, (

√
5 + 1)/2], respectively. Their

statements use the quantities d0, τθ and σθ defined as

d0 := d0(β, θ) = inf
(s,y,x)∈T−1(0)

{
1

2
‖s0 − s‖2S,H +

1

2
‖y0 − y‖2Y,(G+βC∗C) +

1

2βθ
‖x0 − x‖2X

}
, (8)

σθ :=
3θ2 − 7θ + 5 +

√
(3θ2 − 7θ + 5)2 − 4(2− θ)(3− θ)(θ − 1)2

2(3− θ)
, (9)

τθ := 4 max

{
1√
θ
,

√
θ

2− θ

}
. (10)

It is easy to verify that σθ ∈ (0, 1) whenever θ ∈ (0, (
√

5+1)/2) and σθ = 1 when θ = (
√

5+1)/2.

Theorem 2.1. (Pointwise convergence of the proximal ADMM) Consider the sequence
{(sk, yk, xk)} generated by the proximal ADMM with θ ∈ (0, (

√
5 + 1)/2), and let {x̃k} be defined

as
x̃k = xk−1 − β(Cyk−1 +Dsk − c). (11)

Then, for every k ∈ N,  H(sk−1 − sk)
(G+ βC∗C)(yk−1 − yk)

1
βθ (xk−1 − xk)

 ∈
 ∂g(sk)−D∗x̃k
∂f(yk)− C∗x̃k
Cyk +Dsk − c

 (12)

and there exists i ≤ k such that(
‖si−1 − si‖2S,H + ‖yi−1 − yi‖2Y,(G+βC∗C) +

1

βθ
‖xi−1 − xi‖2X

)1/2

≤ 2
√
d0√
k

√
1 + σθ + 2τθ

1− σθ
where d0, σθ and τθ are as in (8), (9) and (10), respectively.

In contrast to the pointwise convergence rate result stated above, the ergodic convergence rate
result stated below holds for the extreme case in which θ = (

√
5 + 1)/2.

Theorem 2.2. (Ergodic convergence of the proximal ADMM) Consider the sequence {(sk, yk, xk)}
generated by the proximal ADMM with θ ∈ (0, (

√
5 + 1)/2], and let {x̃k} be as in (11). Moreover,

consider the ergodic sequences {(sak, yak , xak, x̃ak)} and {εak} defined by

(sak, y
a
k , x

a
k, x̃

a
k) :=

1

k

k∑
i=1

(si, yi, xi, x̃i) , (εak,s, ε
a
k,y) =

1

k

k∑
i=1

(〈ri,s, si − sak〉, 〈ri,y, yi − yak〉) . (13)

where
(ri,s, ri,y) = (H(si−1 − si), (G+ βC∗C)(yi−1 − yi)) . (14)

Then, for every k ∈ N, H(sak−1 − sak)
(G+ βC∗C)(yak−1 − yak)

1
βθ (xak−1 − xak)

 ∈
 ∂gεak,s(s

a
k)−D∗x̃ak

∂fεak,y(yak)− C∗x̃ak
Cyak +Dsak − c

 (15)
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(
‖sak−1 − sak‖2S,H + ‖yak−1 − yak‖2Y,(G+βC∗C) +

1

βθ
‖xak−1 − xak‖2X

)1/2

≤
2
√

2(1 + τθ)d0
k

and

εak,s + εak,y ≤
3(1 + τθ)[3θ

2 + 4σθ(θ
2 + θ + 1)]d0

θ2k

where d0, σθ and τθ are as in (8), (9) and (10), respectively.

The proofs of Theorems 2.1 and 2.2 will be presented in Section 4. For this, we first study a
non-Euclidean HPE framework from which the proximal ADMM is a special instance.

3 A non-Euclidean HPE framework

This section describes and derives convergence rate bounds for a non-Euclidean HPE framework for
solving monotone inclusion problems. Subsection 3.1 describes the non-Euclidean HPE framework
and its corresponding pointwise and ergodic convergence rate bounds. Subsection 3.2 gives the proofs
for the two convergence rate results stated in Subsection 3.1.

3.1 A non-Euclidean HPE framework and its convergence rate

Let Z be finite-dimensional inner product real vector space. We start by introducing the definition
of a distance generating function and its corresponding Bregman distance adopted in this paper.

Definition 3.1. A proper lower semi-continuous convex function w : Z → (−∞,∞] is called a
distance generating function if int(domw) = Dom ∂w 6= ∅ and w is continuously differentiable on
this interior. Moreover, w induces the Bregman distance dw : Z × int(domw)→ R defined as

(dw)(z′; z) := w(z′)− w(z)− 〈∇w(z), z′ − z〉Z ∀(z′, z) ∈ Z × int(domw). (16)

For simplicity, for every z ∈ int(domw), the function (dw)( · ; z) will be denoted by (dw)z so that

(dw)z(z
′) = (dw)(z′; z) ∀(z′, z) ∈ Z × int(domw).

The following useful identities follow straightforwardly from (16):

∇(dw)z(z
′) = −∇(dw)z′(z) = ∇w(z′)−∇w(z) ∀z, z′ ∈ int(domw), (17)

(dw)v(z
′)− (dw)v(z) = 〈∇(dw)v(z), z

′ − z〉Z + (dw)z(z
′) ∀z′ ∈ Z, ∀v, z ∈ int(domw). (18)

Our analysis of the non-Euclidean HPE framework requires the distance generating function to
be regular with respect to a seminorm according to the following definition.

Definition 3.2. Let distance generating function w : Z → [−∞,∞], seminorm ‖ ·‖ in Z and convex
set Z ⊂ int(domw) be given. For given positive constants m and M , w is said to be (m,M)-regular
with respect to (Z, ‖ · ‖) if

(dw)z(z
′) ≥ m

2
‖z − z′‖2 ∀z, z′ ∈ Z, (19)

‖∇w(z)−∇w(z′)‖∗ ≤M‖z − z′‖ ∀z, z′ ∈ Z. (20)
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We now make some remarks about the class of regular distance generating functions as in Def-
inition 3.2, which was first introduced in [12]. First, if the seminorm in Definition 3.2 is a norm,
then (19) implies that w is strongly convex, in which case the corresponding dw is said to be nonde-
generate. However, since ‖ · ‖ is not assumed to be a norm, a regular distance generating function
w does not need to be strongly convex, or equivalently, dw can be degenerate. Second, some ex-
amples of (m,M)-regular distance generating functions can be found in [12, Example 2.3]. For the
purpose of analyzing the proximal ADMM, we make use of the distance generating function given
by w(·) = (1/2)‖ · ‖2Z,Q where Q is a self-adjoint positive semidefinite linear operator. This w can
be easily shown to be (1, 1)-regular with respect to (Z, ‖ · ‖Z,Q). Third, if w : Z → [−∞,∞] is
(m,M)-regular with respect to (Z, ‖ · ‖), then

m

2
‖z − z′‖2 ≤ (dw)z(z

′) ≤ M

2
‖z − z′‖2 ∀z, z′ ∈ Z. (21)

Throughout this section, we assume that w : Z → [−∞,∞] is an (m,M)-regular distance gener-
ating function with respect to (Z, ‖ · ‖) where Z ⊂ int(dom w) is a closed convex set and ‖ · ‖ is a
seminorm in Z. Our problem of interest in this section is the monotone inclusion problem (MIP)

0 ∈ T (z) (22)

where T : Z ⇒ Z is a maximal monotone operator and the following conditions hold:

B1) DomT ⊂ Z;

B2) the solution set T−1(0) of (22) is nonempty.

We now state a non-Euclidean HPE (NE-HPE) framework for solving (22).

NE-HPE framework for solving (22).

(0) Let z0 ∈ Z, η0 ∈ R+ and σ ∈ [0, 1] be given, and set k = 1;

(1) choose λk > 0 and find (z̃k, zk, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk :=
1

λk
∇(dw)zk(zk−1) ∈ T [εk](z̃k), (23)

(dw)zk(z̃k) + λkεk + ηk ≤ σ(dw)zk−1
(z̃k) + ηk−1; (24)

(2) set k ← k + 1 and go to step 1.

end

We now make some remarks about the NE-HPE framework. First, [12] studies an NE-HPE
framework based on a regular distance generating function w for solving a monotone inclusion prob-
lem consisting of the sum of T and a µ-monotone operator S with respect to w. The latter notion
implies strong monotonicity of S when dw is nondegenerate (see [12, Assumption (A1)]). Second,
the NE-HPE does not specify how to find λk and (z̃k, zk, εk) satisfying (23) and (24). The partic-
ular scheme for computing λk and (z̃k, zk, εk) will depend on the instance of the framework under
consideration and the properties of the operator T . Third, if w is strongly convex on Z and σ = 0,
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then (24) implies that εk = 0 and zk = z̃k for every k, and hence that rk ∈ T (zk) in view of (23).
Therefore, the HPE error conditions (23)-(24) can be viewed as a relaxation of an iteration of the
exact non-Euclidean proximal point method, namely,

0 ∈ 1

λk
∇(dw)zk−1

(zk) + T (zk).

Fourth, if w is strongly convex on Z, then it can be shown that the above inclusion has a unique
solution zk, and hence that, for any given λk > 0, there exists a triple (z̃k, zk, εk) of the form (zk, zk, 0)
satisfying (23)-(24) with σ = 0. Clearly, computing the triple in this (exact) manner is expensive,
and hence computation of (inexact) quadruples satisfying the HPE (relative) error conditions with
σ > 0 is more computationally appealing.

We end this subsection by presenting pointwise and ergodic convergence rate results for the NE-
HPE framework whose proofs are given in the next subsection. Their statements use the quantity
(dw)0 defined as

(dw)0 = inf{(dw)z0(z∗) : z∗ ∈ T−1(0)}. (25)

Theorem 3.3. (Pointwise convergence of the NE-HPE) Consider the sequence {(rk, εk, λk)}
generated by the NE-HPE framework with σ < 1. Then, for every k ≥ 1, rk ∈ T [εk](z̃k) and the
following statements hold:

(a) if λ := infj≥1 λj > 0, then there exists i ≤ k such that

‖ri‖∗ ≤
2M√
m

√√√√(1 + σ)(dw)0 + 2η0
1− σ

(
λ−1i∑k
j=1 λj

)
≤ 2M

λ
√
mk

√
(1 + σ)(dw)0 + 2η0

1− σ

εi ≤
(1 + σ)(dw)0 + 2η0

(1− σ)
∑k

i=1 λi
≤ (1 + σ)(dw)0 + 2η0

(1− σ)λk
;

(b) there exists an index i ≤ k such that

‖ri‖∗ ≤
2M√
m

√√√√(1 + σ)(dw)0 + 2η0
1− σ

(
1∑k

j=1 λ
2
j

)
, εi ≤

[(1 + σ)(dw)0 + 2η0]λi

(1− σ)
∑k

j=1 λ
2
j

,

where (dw)0 is as defined in (25).

From now on, we focus on the ergodic convergence of the NE-HPE framework. For k ≥ 1, define
Λk :=

∑k
i=1 λi and the ergodic iterate (z̃ak , r

a
k, ε

a
k) as

z̃ak =
1

Λk

k∑
i=1

λiz̃i, rak :=
1

Λk

k∑
i=1

λiri, εak :=
1

Λk

k∑
i=1

λi (εi + 〈ri, z̃i − z̃ak〉) . (26)

The following result provides convergence rate bounds for ‖rak‖∗ and εak. The pair (rak, ε
a
k) plays

the role of a residual for z̃ak .
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Theorem 3.4. (Ergodic convergence of the NE-HPE) For every k ≥ 1, rak ∈ T [εak](z̃ak) and

‖rak‖∗ ≤
2
√

2M((dw0) + η0)
1/2

√
mΛk

, εak ≤
(

3M

m

)[
3((dw)0 + η0) + σρk

Λk

]
.

where
ρk := max

i=1,...,k
(dw)zi−1(z̃i).

Moreover, the sequence {ρk} is bounded under either one of the following situations:

(a) σ < 1, in which case

ρk ≤
(dw)0 + η0

1− σ
; (27)

(b) DomT is bounded, in which case

ρk ≤
2M

m
[(dw)0 + η0 +D]

where D := sup{min{(dw)y(y
′), (dw)y′(y)} : y, y′ ∈ DomT} is the diameter of DomT with

respect to dw, and (dw)0 is as defined in (25).

The bound on εak presented in Theorem 3.4 depends on the quantity ρk which is bounded under
the assumption σ < 1 or boundedness of DomT . As we will show in Section 4, proximal ADMM
is an instance of the NE-HPE in which the stepsize θ = (

√
5 + 1)/2 corresponds to the parameter

σ = 1. Even in this case, the sequence {ρk} is bounded regardless the boundedness of DomT .

3.2 Convergence rate analysis of the NE-HPE framework

The main goal of this subsection is to present the proofs of Theorems 3.3 and 3.4. Toward this
goal, we first establish some technical lemmas which provide useful properties of regular Bregman
distances and of the NE-HPE framework.

Lemma 3.5. Let w : Z → [−∞,∞] be an (m,M)-regular distance generating function with respect
to (Z, ‖ · ‖) as in Definition 3.2. Then, the following statements hold:

(a) for every z, z′ ∈ Z, we have

(‖∇(dw)z′(z)‖∗)2 ≤
2M2

m
min{(dw)z(z

′), (dw)z′(z)}; (28)

(b) for every l ≥ 1 and u0, u1, . . . , ul ∈ Z, we have

(dw)u0(ul) ≤
lM

m

l∑
i=1

min{(dw)ui−1(ui), (dw)ui(ui−1)}. (29)

Proof. (a) It is easy to see that (28) immediately follows from (17), (19) and (20).
(b) It follows from the second inequality in (21) that

(dw)u0(ul) ≤
M

2
‖ul − u0‖2 ≤

M

2

(
l∑

i=1

‖ui − ui−1‖

)2

≤ lM

2

l∑
i=1

‖ui − ui−1‖2

which, in view of (19), immediately implies (29).
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The next result presents some useful estimates related to the sequence generated by the NE-HPE
framework.

Lemma 3.6. For every k ≥ 1, the following statements hold:

(a) for every z ∈ dom w, we have

(dw)zk−1
(z)− (dw)zk(z) = (dw)zk−1

(z̃k)− (dw)zk(z̃k) + λk〈rk, z̃k − z〉Z ;

(b) for every z ∈ dom w, we have

(dw)zk−1
(z)− (dw)zk(z) + ηk−1 ≥ (1− σ)(dw)zk−1

(z̃k) + λk(〈rk, z̃k − z〉Z + εk) + ηk;

(c) for every z∗ ∈ T−1(0), we have

(dw)zk−1
(z∗)− (dw)zk(z∗) + ηk−1 ≥ (1− σ)(dw)zk−1

(z̃k) + ηk;

(d) for every z∗ ∈ T−1(0), we have

(dw)zk(z∗) + ηk ≤ (dw)zk−1
(z∗) + ηk−1.

Proof. (a) Using (18) twice and using the definition of rk given by (23), we obtain

(dw)zk−1
(z)− (dw)zk(z) = (dw)zk−1

(zk) + 〈∇(dw)zk−1
(zk), z − zk〉Z

= (dw)zk−1
(zk) + 〈∇(dw)zk−1

(zk), z̃k − zk〉Z + 〈∇(dw)zk−1
(zk), z − z̃k〉Z

= (dw)zk−1
(z̃k)− (dw)zk(z̃k) + 〈∇(dw)zk−1

(zk), z − z̃k〉Z
= (dw)zk−1

(z̃k)− (dw)zk(z̃k) + λk〈rk, z̃k − z〉Z .

(b) This statement follows as an immediate consequence of (a) and (24).
(c) This statement follows from (b), the fact that 0 ∈ T (z∗) and rk ∈ T [εk](z̃k), and (3).
(d) This statement follows as an immediate consequence of (c) and σ ≤ 1.

The pointwise convergence rate bounds for the NE-HPE framework will follow directly from the
next result which estimates the residual pair (ri, εi).

Lemma 3.7. Let {(rk, εk, λk)} and (η0, σ) be given by the NE-HPE framework and assume that
σ < 1. Then, for every t ∈ R and every k ≥ 1, there exists an i ≤ k such that

‖ri‖∗ ≤
2M√
m

√√√√(1 + σ)(dw)0 + 2η0
1− σ

(
λt−2i∑k
j=1 λ

t
j

)
, εi ≤

(1 + σ)(dw)0 + 2η0
1− σ

(
λt−1i∑k
j=1 λ

t
j

)

where (dw)0 is as defined in (25).
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Proof. For every i ≥ 1, define

θi = max

{
mλ2i (‖ri‖∗)2

4M2
, λiεi

}
.

It is easy to see that the conclusion of the lemma will follow if we show that, for every i ≥ 1, we have

(1− σ)
k∑
i=1

θi ≤ (1 + σ)(dw)0 + 2η0.

In order to show that the last inequality hold, we have, from (17) and (23), for every i ≥ 1

λi‖ri‖∗ = ‖∇(dw)zi−1(z̃i)−∇(dw)zi(z̃i)‖∗ ≤ ‖∇(dw)zi−1(z̃i)‖∗ + ‖∇(dw)zi(z̃i)‖∗

≤
√

2M√
m

[
(dw)zi−1(z̃i)

1/2 + (dw)zi(z̃i)
1/2
]

≤
√

2M√
m

[
(dw)zi−1(z̃i)

1/2 + (σ(dw)zi−1(z̃i) + ηi−1 − ηi)1/2
]
,

where the second and third inequalities are due to (28) and (24), respectively. Hence,

mλ2i (‖ri‖∗)2

2M2
≤ 2(1 + σ)(dw)zi−1(z̃i) + 2(ηi−1 − ηi).

The previous estimative together with (24) and definition of θi imply that θi ≤ (1 +σ)(dw)zi−1(z̃i) +
(ηi−1 − ηi) for every i ≥ 1. Thus, if z∗ ∈ T−1(0), it follows from Lemma 3.6(c) that

(1−σ)

k∑
i=1

θi ≤ (1+σ)[(dw)z0(z∗)− (dw)zk(z∗)+η0−ηk]+(1−σ)(η0−ηk) ≤ (1+σ)(dw)z0(z∗)+2η0.

The desired inequality follows from the latter inequality and the definition of (dw)0 in (25). As a
consequence, we obtain the conclusion of the lemma.

Now we are ready to prove Theorems 3.3 and 3.4 stated in Subsection 3.1.

Proof of Theorem 3.3: The inclusion rk ∈ T [εk](z̃k) holds due to (23). Statements (a) and (b)
follow directly from Lemma 3.7 with t = 1 and t = 2, respectively. �

Proof of Theorem 3.4: The inclusion rak ∈ T [εak](z̃ak) follows from the transportation formula (see
[2, Theorem 2.3]). Now, let z∗ ∈ T−1(0). Using (17), (23) and (26), we easily see that

Λkr
a
k = ∇(dw)z0(zk) = ∇(dw)z0(z∗)−∇(dw)zk(z∗)

which, together with (28) and Lemma 3.6(d), imply that

Λk‖rak‖∗ ≤ ‖∇(dw)z0(z∗)‖∗ + ‖∇(dw)zk(z∗)‖∗

≤
√

2M√
m

[(dw)z0(z∗)1/2 + (dw)zk(z∗)1/2] ≤ 2
√

2M√
m

((dw)z0(z∗) + η0)
1/2.
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This inequality together with definition of (dw)0 clearly imply the bound on ‖rak‖∗. To show the
bound on εak, first note that Lemma 3.6(b) implies that for every z ∈W ,

(dw)z0(z) + η0 ≥
k∑
i=1

λi(〈ri, z̃i − z〉Z + εi).

Letting z = z̃ak in the last inequality and using the fact that (dw)z0(·) is convex, we obtain

max
i=1,...,k

(dw)z0(z̃i) + η0 ≥ (dw)z0(z̃ak) + η0 ≥
k∑
i=1

λi(〈ri, z̃i − z̃ak〉Z + εi) = Λkε
a
k (30)

where the equality is due to (26). On the other hand, (29) implies that, for every i ≥ 1 and
z∗ ∈ T−1(0),

(dw)z0(z̃i) ≤
3M

m
[(dw)zi(z̃i) + (dw)zi(z

∗) + (dw)z0(z∗)]

≤ 3M

m

[
σ(dw)zi−1(z̃i) + ηi−1 + (dw)zi−1(z∗) + ηi−1 + (dw)z0(z∗)

]
≤ 3M

m

[
σ(dw)zi−1(z̃i) + 2((dw)zi−1(z∗) + ηi−1) + (dw)z0(z∗)

]
≤ 3M

m

[
σ(dw)zi−1(z̃i) + 3(dw)z0(z∗) + 2η0

]
where the second inequality is due to (29) and Lemma 3.6(d), and the last inequality is due to
Lemma 3.6(d). Combining the above relations with (30) and using the definitions of ρk and (dw)0
and the fact that M/m ≥ 1, we conclude that the bound on εak holds.

We now establish the bounds on ρk under either one of the conditions (a) or (b). First, if σ < 1,
then it follows from Lemma 3.6(c)-(d) that (1−σ)(dw)zi−1(z̃i) ≤ (dw)zi−1(z∗)+ηk−1 ≤ (dw)z0(z∗)+η0
for every i ≥ 1 and z∗ ∈ T−1(0), and hence that (27) holds. Assume now that DomT is bounded.
Then, it follows from inequality (29) and Lemma 3.6(d) that, for every i ≥ 1 and z∗ ∈ T−1(0),

(dw)zi−1(z̃i) ≤
2M

m

[
(dw)zi−1(z∗) + min{(dw)z̃i(z

∗), (dw)z∗(z̃i)}
]
≤ 2M

m
[(dw)z0(z∗) + η0 +D]

which, in view of definitions of ρk and (dw)0, proves (b). �

4 Convergence rate analysis of the proximal ADMM

Our goal in this section is to show that the proximal ADMM is an instance of the NE-HPE frame-
work for solving the inclusion problem (4) and, as a by-product, establish its pointwise and ergodic
convergence rate bounds presented in Section 2.

We start by presenting a preliminary technical result about the proximal ADMM.
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Lemma 4.1. Consider the triple (sk, yk, xk) generated at the k-iteration of the proximal ADMM and
the point x̃k defined in (11). Then,

0 ∈ H(sk − sk−1) + [∂g(sk)−D∗x̃k] , (31)

0 ∈ (G+ βC∗C)(yk − yk−1) + [∂f(yk)− C∗x̃k] , (32)

0 =
1

θβ
(xk − xk−1) + [Cyk +Dsk − c] , (33)

x̃k − xk−1 = βC(yk − yk−1) +
xk − xk−1

θ
. (34)

Proof. From the optimality condition of (5), we have

0 ∈ ∂g(sk)−D∗(xk−1 − β(Cyk−1 +Dsk − c)) +H(sk − sk−1),

which, combined with definition of x̃k in (11), yields (31). Now, from the optimality condition of (6)
and definition of x̃k in (11), we obtain

0 ∈ ∂f(yk)− C∗xk−1 + βC∗(Cyk +Dsk − c) +G(yk − yk−1)

= ∂f(yk)− C∗[xk−1 + β(Cyk−1 +Dsk − c)] + βC∗C(yk − yk−1) +G(yk − yk−1)

= ∂f(yk)− C∗x̃k + βC∗C(yk − yk−1) +G(yk − yk−1).

which proves (32). Moreover, (33) follows immediately from (7). On the other hand, it follows from
definition of xk in (7) that

xk − xk−1
θ

+ βC(yk − yk−1) = −β(Cyk−1 +Dsk − c)

which, combined with definition of x̃k in (11), yields (34).

In order to show that the proximal ADMM is an instance of the NE-HPE framework, we need
to introduce the elements required by the setting of Section 3, namely, the space Z, the seminorm
‖ · ‖ on Z, the distance generating function w : Z → [−∞,∞] and the convex set Z ⊂ int(domw).
We consider Z := S × Y × X and endow it with the inner product given by

〈z, z′〉 := 〈s, s′〉S + 〈y, y′〉Y + 〈x, x′〉X ∀ z = (s, y, x), z′ = (s, y, x).

The seminorm ‖ · ‖, the function w and the set Z are defined as

‖z‖ :=

(
‖s‖2S,H + ‖y‖2Y,(G+βC∗C) +

1

βθ
‖x‖2X

)1/2

w(z) :=
1

2
‖(s, y, x)‖2, Z := Z (35)

for every z = (s, y, x) ∈ Z. Clearly, the Bregman distance associated with w is given by

(dw)z(z
′) =

1

2
‖s′ − s‖2S,H +

1

2
‖y′ − y‖2Y,(G+βC∗C) +

1

2βθ
‖x′ − x‖2X (36)
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for every z = (s, y, x) ∈ Z and z′ = (s′, y′, x′) ∈ Z.
Using Proposition 1.1 and the fact that ‖ · ‖ = ‖ · ‖Z,Q where Q is the self-adjoint positive

semidefinite linear operator given by

Q(s, y, x) = (Hs, (G+ βC∗C)y, x/(βθ)) ∀(s, y, x) ∈ Z,

it is easy to see that the function w is a (1, 1)-regular distance generating function with respect to
(Z, ‖ · ‖).

To simplify some relations in the proofs given below, define

∆sk = sk − sk−1, ∆yk = yk − yk−1, ∆xk = xk − xk−1. (37)

The following technical result will be used to prove that the proximal ADMM is an instance of the
NE-HPE framework.

Lemma 4.2. Let {(sk, yk, xk)} be the sequence generated by the proximal ADMM. Then, the following
statements hold:

(a) if θ < 2, then
1√
θ

(
1

2
‖∆y1‖2Y,G −

1√
θ
〈C∆y1,∆x1〉X

)
≤ τθd0

where d0 and τθ are as in (8) and (10), respectively.

(b) for any θ > 0, we have

1

θ
〈C∆yk,∆xk〉X ≥

1− θ
θ
〈C∆yk,∆xk−1〉X +

1

2
‖∆yk‖2Y,G −

1

2
‖∆yk−1‖2Y,G, ∀k ≥ 2.

Proof. (a) Let a point z∗ := (s∗, y∗, x∗) be such that 0 ∈ T (s∗, y∗, x∗) (see assumption A1). Since
〈x, x′〉X ≤ (1/2)(‖x‖2X + ‖x′‖2X ) for every x, x′ ∈ X , using (37) we obtain

1

2
‖∆y1‖2Y,G −

1√
θ
〈C∆y1,∆x1〉X ≤

1

2βθ
‖∆x1‖2X +

β

2
‖C∆y1‖2X +

1

2
‖∆y1‖2Y,G

≤ 1

βθ
‖x1 − x∗‖2X + β‖C(y1 − y∗)‖2X + ‖y1 − y∗‖2Y,G

+
1

βθ
‖x0 − x∗‖2X + β‖C(y0 − y∗)‖2X + ‖y0 − y∗‖2Y,G

which, combined with (36) and simple calculus, yields

1√
θ

(
1

2
‖∆y1‖2Y,G −

1√
θ
〈C∆y1,∆x1〉X

)
≤ 2√

θ
((dw)z1(z∗) + (dw)z0(z∗)) . (38)

On the other hand, consider

z0 = (s0, y0, x0), z1 = (s1, y1, x1), z̃1 = (s1, y1, x̃1), λ1 = 1, ε1 = 0. (39)

Lemma 4.1 implies that inclusion (23) is satisfied for (z0, z1, z̃1, λ1, ε1) with T and dw as in (4) and
(36), respectively. Hence, it follows from Lemma 3.6(a) with z = z∗, λ1 = 1 and the fact that
〈r1, z̃1 − z∗〉 ≥ 0 (because 0 ∈ T (z∗) and r1 ∈ T (z̃1)) that

(dw)z1(z∗) ≤ (dw)z0(z∗) + (dw)z1(z̃1)− (dw)z0(z̃1). (40)
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Using the definitions in (36) and (39) and equation in (34), we obtain

(dw)z1(z̃1)− (dw)z0(z̃1) ≤
1

2βθ
‖x̃1 − x1‖2X −

β

2
‖C(y1 − y0)‖2X −

1

2βθ
‖x̃1 − x0‖2X

=
(θ − 1)

2βθ2
‖x1 − x0‖2X −

1

2

∥∥∥∥x1 − x0θ
√
β

+
√
βC(y1 − y0)

∥∥∥∥2
X

≤ (θ − 1)

2βθ2
‖x1 − x0‖2X .

If θ ∈ (0, 1], then the last inequality implies that

(dw)z1(z̃1) ≤ (dw)z0(z̃1). (41)

Now, if θ ∈ (1, 2), we have

(dw)z1(z̃1)− (dw)z0(z̃1) ≤
(θ − 1)

2βθ2
‖x1 − x0‖2X ≤

2(θ − 1)

θ

(
‖x1 − x∗‖2X

2βθ
+
‖x0 − x∗‖2X

2βθ

)
≤ 2(θ − 1)

θ
[(dw)z1(z∗) + (dw)z0(z∗)]

where the second inequality is due to the fact that 2ab ≤ a2 + b2 for all a, b ≥ 0, and the last
inequality is due to (36) and definitions of z0, z1 and z∗. Hence, combining the last estimative with
(40), we obtain

(dw)z1(z∗) ≤ θ

2− θ

(
1 +

2(θ − 1)

θ

)
(dw)z0(z∗) =

3θ − 2

2− θ
(dw)z0(z∗),

which, combined with (41), yields

(dw)z1(z∗) ≤ max

{
1,

3θ − 2

2− θ

}
(dw)z0(z∗).

Therefore, statement (a) follows from (38), the last inequality, definition of τθ in (10) and the fact
that d0 (as defined in (8)) satisfies d0 = infz∈T−1(0)(dw)z0(z).

(b) From the inclusion (32) and relation (34), we see that, for every j ≥ 1,

∂f(yj) 3 C∗(x̃j − βC(yj − yj−1))−G(yj − yj−1) =
1

θ
C∗(xj − (1− θ)xj−1)−G(yj − yj−1).

For every k ≥ 2, using the previous inclusion for j = k−1 and j = k, it follows from the monotonicity
of the subdifferential of f that

0 ≤
〈

1

θ
C∗(xk − xk−1)−

(1− θ)
θ

C∗(xk−1 − xk−2)−G(yk − yk−1) +G(yk−1 − yk−2), yk − yk−1
〉
Y
,

which, combined with (37), yields

1

θ
〈C∆yk,∆xk〉X ≥

(1− θ)
θ
〈C∆yk,∆xk−1〉X + ‖∆yk‖2Y,G − 〈G∆yk−1,∆yk〉Y .

Hence, item (b) follows from the last inequality and the fact that 〈Gy, y′〉Y ≤ (1/2)(‖y‖2Y,G+‖y′‖2Y,G)
for every y, y′ ∈ Y. Therefore, the proof of the lemma is concluded.
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We now present some properties of the parameter σθ defined in (9).

Lemma 4.3. Let θ ∈ (0, (
√

5+1)/2] be given and consider the parameter σθ as defined in (9). Then,
the following statements hold:

(a) σ = σθ is the largest root of the equation det(Mθ(σ)) = 0 and det(Mθ(σ)) > 0 for every σ > σθ
where det(·) denotes the determinant function and

Mθ(σ) :=

[
σ(1 + θ)− 1 (σ + θ − 1)(1− θ)

(σ + θ − 1)(1− θ) σ − (1− θ)2

]
; (42)

(b) 1/3 < max{(1− θ)2, 1− θ, 1/(1 + θ)} ≤ σθ ≤ 1;

(c) the matrix Mθ(σ) in (42) is positive semidefinite for σ = σθ.

Proof. (a) It is a simple algebraic computation to see that σ = σθ is the largest root of the second-
order equation det(Mθ(σ)) = 0.

(b) The second inequality follows by (a) and the fact that det(Mθ(σ)) ≤ 0 for σ equal to (1−θ)2,
1− θ and 1/(1 + θ). Now, the first and third inequalities are due to the fact that θ ∈ (0, (

√
5 + 1)/2]

and 1/3 ≤ 1/(1 + θ).
(c) Statements (a) and (b) imply that det(Mθ(σθ)) = 0 and the main diagonal entries of Mθ(σθ)

are nonnegative. Since Mθ(σ) is symmetric, we then conclude that (c) holds.

The next result shows that the proximal ADMM can be seen as an instance of the NE-HPE
framework.

Theorem 4.4. Consider the operator T and Bregman distance dw as in (4) and (36), respectively.
Let {(sk, yk, xk)} be the sequence generated by the proximal ADMM with θ ∈ (0, (

√
5 + 1)/2] and

consider {x̃k} as in (11). Define

zk−1 = (sk−1, yk−1, xk−1), z̃k = (sk, yk, x̃k), λk = 1, εk = 0 ∀k ≥ 1, (43)

and the sequence {ηk} as

η0 = τθd0, ηk = [σθ − (θ − 1)2]
‖∆xk‖2X

2βθ3
+
σθ + θ − 1

2θ
‖∆yk‖2Y,G, ∀k ≥ 1 (44)

where d0, σθ, τθ and (∆xk,∆yk) are as in (8), (9), (10) and (37), respectively. Then, the sequence
{(zk, z̃k, λk, εk, ηk)} is an instance of the NE-HPE framework with input z0 = (s0, y0, x0), η0 and
σ = σθ.

Proof. The inclusion (23) follows from (31)-(33), (43) and definitions of T and dw. Now it remains
to show that the error condition (24) holds. First of all, it follows from (34), (36), (37) and (43) that

(dw)zk(z̃k) + λkεk =
1

2βθ
‖x̃k − xk‖2X =

1

2βθ

∥∥∥∥βC∆yk +
1− θ
θ

∆xk

∥∥∥∥2
X

=
β

2θ
‖C∆yk‖2X +

(1− θ)
θ2

〈C∆yk,∆xk〉X +
(1− θ)2

2βθ3
‖∆xk‖2X . (45)
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Also, (36), (37) and (43) imply that

(dw)zk−1
(z̃k) =

1

2
‖∆sk‖2S,H +

1

2
‖∆yk‖2Y,G +

β

2
‖C∆yk‖2X +

1

2βθ
‖xk−1 − x̃k‖2X . (46)

It follows from (34) and (37) that

‖xk−1 − x̃k‖2X =

∥∥∥∥βC∆yk +
1

θ
∆xk

∥∥∥∥2
X

= β2‖C∆yk‖2X +
2β

θ
〈C∆yk,∆xk〉X +

1

θ2
‖∆xk‖2X

which, combined with (46), yields

(dw)zk−1
(z̃k) =

‖∆sk‖2S,H
2

+
‖∆yk‖2Y,G

2
+
β(θ + 1)‖C∆yk‖2X

2θ
+

1

θ2
〈C∆yk,∆xk〉X +

‖∆xk‖2X
2βθ3

. (47)

Therefore, combining (45) and (47), we see, after simple algebraic manipulations, that the error
condition (24) is satisfied if and only if

[σ(1 + θ)− 1]
β‖C∆yk‖2X

2θ
+
[
σ − (θ − 1)2

] ‖∆xk‖2X
2βθ3

+ σ
‖∆yk‖2Y,G

2
+

(σ + θ − 1)

θ2
〈C∆yk,∆xk〉X

≥ ηk − ηk−1 − σ
‖∆sk‖2S,H

2
. (48)

We now show that inequality (48) with σ = σθ holds for k = 1. Indeed, it follows from definition of
η1 and σθ ≥ 1/(1 + θ) (see Lemma 4.3 (b)) that

[σθ(1 + θ)− 1]
β‖C∆y1‖2X

2θ
+
[
σθ − (1− θ)2

] ‖∆x1‖2X
2βθ3

+ σθ
‖∆y1‖2Y,G

2
+

(σθ + θ − 1)

θ2
〈C∆y1,∆x1〉X

≥
[
σθ −

σθ + θ − 1

θ
+
σθ + θ − 1

θ3/2

] ‖∆y1‖2Y,G
2

+ η1 +
(σθ + θ − 1)

θ3/2

(
1√
θ
〈C∆y1,∆x1〉X −

1

2
‖∆y1‖2Y,G

)
≥
[
σθ −

σθ + θ − 1

3θ

] ‖∆y1‖2Y,G
2

+ η1 −
(σθ + θ − 1)

θ
τθd0

≥ η1 − η0

where the second inequality follows from the fact that
√
θ ≤ 3/2 and Lemmas 4.2(a) and 4.3(b), and

the third inequality is due to the fact that 1/3 ≤ σθ ≤ 1 (see Lemma 4.3(b)) and definition of η0.
Therefore, inequality (48) holds with k = 1 and σ = σθ.

We next show that inequality (48) with σ = σθ holds for k ≥ 2. Using Lemma 4.2(b) and the
definition of {ηk} in (44), we see, after simple calculus, that a sufficient condition for (48) to hold
with σ = σθ and k ≥ 2 is that

(σθ(1 + θ)− 1)β
‖C∆yk‖2X

2
+ [σθ − (1− θ)2]

‖∆xk−1‖2X
2βθ2

+
(σθ + θ − 1)(1− θ)

θ
〈C∆yk,∆xk−1〉X ≥ 0.

Hence, since the last inequality holds due to Lemma 4.3(c), we conclude the proof of the theorem.
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Now we are ready to present the proof of the pointwise convergence rate of the proximal ADMM.
Proof of Theorem 2.1: Since σθ ∈ [0, 1) for any θ ∈ (0, (

√
5 + 1)/2) and w as defined in (35) is a

(1, 1)-regular distance generating function and λ := inf λk = 1, we obtain by combining Theorems 4.4
and 3.3(a) that inclusion (12) holds and there exists i ≤ k such that(

‖si−1 − si‖2S,H + ‖yi−1 − yi‖2Y,(G+βC∗C) +
1

βθ
‖xi−1 − xi‖2X

)1/2

≤ 2√
k

√
(1 + σθ)d0 + 2η0

1− σθ
,

where we also used the definition of the norm ‖·‖ in (35) and Proposition 1.1. The result now follows
from the last inequality and definition of η0 in (44). �

In order to establish the ergodic convergence rate of the proximal ADMM, we need the next
auxiliary result.

Lemma 4.5. Let {(sk, yk, xk)} be the sequence generated by the proximal ADMM and {x̃k} be given
by (11). Then, the pair (zk−1, z̃k) as defined in (43) satisfies

(dw)zk−1
(z̃k) ≤

4(1 + τθ)(θ
2 + θ + 1)

θ2
d0 k ≥ 1,

where dw is the Bregman distance given in (36), d0 and τθ are as in (8) and (10), respectively.

Proof. It follows from (36) and (43) that

(dw)zk−1
(z̃k) =

1

2
‖∆sk‖2S,H +

1

2
‖∆yk‖2Y,G +

β

2
‖C∆yk‖2X +

1

2βθ
‖xk−1 − x̃k‖2X . (49)

On the other hand, using (34) we have

1

2βθ
‖xk−1 − x̃k‖2X =

1

2βθ
‖βC∆yk +

∆xk
θ
‖2X

=
β

2θ
‖C∆yk‖2X +

1

βθ2
〈βC∆yk,∆xk〉X +

1

2βθ3
‖∆xk‖2X

≤ β(θ + 1)

2θ2
‖C∆yk‖2X +

θ + 1

2βθ3
‖∆xk‖2X

where the inequality is due to Cauchy-Schwarz inequality and the fact that 2ab ≤ a2 + b2 for all
a, b ≥ 0. Combining the last inequality and (49), we have

(dw)zk−1
(z̃k) ≤

(θ2 + θ + 1)

θ2

[1

2
‖∆sk‖2S,H +

1

2
‖∆yk‖2Y,G +

β

2
‖C∆yk‖2X +

1

2βθ
‖∆xk‖2X

]
≤ 2(θ2 + θ + 1)

θ2
[
(dw)zk−1

(z∗) + (dw)zk(z∗)
]

where the last inequality is due to (36) and the fact that 2ab ≤ a2 + b2 for all a, b ≥ 0. Hence, since
by Theorem 4.4 the proximal ADMM is an instance of the NE-HPE framework, it follows from the
last estimative and Lemma 3.6(d) that

(dw)zk−1
(z̃k) ≤

4(θ2 + θ + 1)

θ2
((dw)z0(z∗) + η0)

which, combined with the definition of η0 in (44) and the fact that d0 (as defined in (8)) satisfies
d0 = infz∈T−1(0)(dw)z0(z), proves the result.

18



Next we present the proof of the ergodic iteration-complexity bound for the proximal ADMM.
Proof of Theorem 2.2: First, it follows from Theorem 4.4 that the proximal ADMM with θ ∈
(0, (
√

5+1)/2] is an instance of the NE-HPE applied to problem (4) in which σ := σθ, {(zk, z̃k, λk, εk)}
and {ηk} are as defined in (9), (43) and (44), respectively. Moreover, inclusions (31)-(33) is equivalent
to

H(sk−1−sk)+D∗x̃k ∈ ∂g(sk), (G+βC∗C)(yk−1−yk)+C∗x̃k ∈ ∂f(yk),
1

βθ
(xk−1−xk) = Cyk+Dsk−c.

Hence, using (13) we obtain trivially the third inclusion of (15) while the first and second inclusions
of (15) follow from (13) and the transportation formula (see [2, Theorem 2.3]). Now, since w as
defined in (35) is a (1, 1)-regular distance generating function and 1 = λ = inf λk, we obtain from
Theorem 3.4 and Lemma 4.5 that

‖(rak,s, rak,y, rak,x)‖∗ ≤
2
√

2(d0 + η0)

k
, εak ≤

3[3θ2(d0 + η0) + 4σθ(1 + τθ)(θ
2 + θ + 1)d0]

θ2k
, ∀k ≥ 1. (50)

Hence, since (rak,s, r
a
k,y, r

a
k,x) = (H(sak−1 − sak), (G + βC∗C)(yak−1 − yak), (xak−1 − xak)/(βθ), it follows

from the definition of ‖ · ‖ in (35) and Proposition 1.1 that

‖(rak,s, rak,y, rak,x)‖∗ =

(
‖sak−1 − sak‖2S,H + ‖yak−1 − yak‖2Y,(G+βC∗C) +

1

βθ
‖xak−1 − xak‖2X

)1/2

.

Therefore, the result follows from (50) and the definition of η0 in (44). �
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