

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO

PLANO DE ENSINO

1. DADOS GERAIS

Disciplina: Redes Neurais Profundas

Carga Horária: 64h

Nome do Professor: Dr. Alisson Assis Cardoso

Dias/Horário: Segunda das 08:00 às 11:40h

Local: Sala 08, Bloco B

Semestre/Ano: Segundo semestre de 2025

2. OBJETIVOS

- -Apresentar fundamentos relativos às Redes Neurais Profundas;
- -Apresentar conceitos de redes neurais convolucionais e recorrentes;
- -Apresentar arquiteturas modernas de redes neurais profundas;
- -Apresentar conceitos de Redes Neurais Generativas e Redes de aprendizado de Reforço.

3. EMENTA (Original)

Conceitos relacionados às Redes Neurais Profundas; Redes Neurais Lineares; Perceptron Multicamadas; Redes Neurais Convolucionais (CNN): Convolução, Padding, Stride, Pooling, Normalização e Regularização; Redes Neurais Convolucionais Modernas: LeNet, AlexNet, VGG, ResNet, DenseNet; Redes Neurais Recorrentes: Modelos Sequenciais, retropropagação em redes recorrentes; Redes Neurais Recorrentes Modernas: GRU, LSTM, Bi-LSTM, Arquitetura Encoder-Decoder; Mecanismos de Atenção; Transformers; Visão Computacional; Data Augmentation, Redes Yolo, SSD, RCNN, Fast-RCNN e Faster-RCNN, Redes Neurais Generativas (GANs); Modelos de difusão; e Redes Neurais Profundas de Aprendizado por Reforço: Reinforce, Q-Learning, DQN, DDQN, Actor-Critic e PPO.

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO

4. METODOLOGIA DE ENSINO

- Aulas expositivas e interativas. Mediar a transmissão de conhecimento por meio da interação com os alunos.
- -Estudo Dirigido: Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
- -Trabalho computacional: Permitir aplicação do conhecimento, criatividade e análise para resolver problemas de engenharia com técnicas de aprendizado profundo.

5. TDICS UTILIZADAS

- -E-mail institucional: alsnac@ufg.br
- -SIGAA: registro de frequência e de notas de atividades avaliativas de alunos e geração do diário de classe.

6. CRONOGRAMA

	Assunto/Tópicos do Programa	Horas
1.	Plano de ensino e Introdução às Redes Neurais Profundas	4h
2.	Redes Neurais Lineares e Multicamadas	8h
3.	Redes Neurais Convolucionais	8h
4.	Redes Neurais Convolucionais Modernas	4h
5.	Visão Computacional	8h
6.	Redes Neurais Profundas de Aprendizado por Reforço	12h
7.	Redes Neurais Recorrentes	6h
8.	Redes Neurais Recorrentes Modernas	6h
9.	Arquitetura Encoder-Decoder, Mecanismos de Atenção e Transformers	4h
10	Redes Neurais Generativas	4h

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO

CARGA HORÁRIA TOTAL

64h

6. AVALIAÇÃO

 A avaliação da disciplina se dará em forma de trabalhos computacionais especificados pelo professor sobre o assunto apresentado em aula. Serão três trabalhos: T1, T2 e T3.
 A nota final será constituída da seguinte forma,

$$NF = 0.35 * T1 + 0.3 * T2 + 0.35 * T3$$

- Os trabalhos deverão ser entregues nas datas estipuladas, em acordo com os discentes, em sala de aula. Não sendo aceito envio de trabalhos após essa data.
- A equivalência da nota final em termos de conceitos seguirá a resolução RESOLUÇÃO PPGEEC, Nº 2/2015, DE 4 DE MARÇO DE 2015,

https://files.cercomp.ufg.br/weby/up/873/o/Resoluc%CC%A7a%CC%83oEquivalenciaConceitosNotas.pdf

7. BIBLIOGRAFIA

Zhang, Aston – Dive into deep learning. Cambridge University Press, 2024. URL: https://d2l.ai.

Graesser, Laura e Keng, Wah Loon - Foundations of Deep Reinforcement Learning: Theory and Practice in Python. Addison-Wesley, 2019. URL: slm-lab.gitbook.io/slm-lab

Simon J.D. Prince - Understanding Deep Learning. The MIT Press, 2024. URL: https://udlbook.github.io/udlbook/.

Bishop, C. M - Deep Learning - Foundations and Concepts. Springer, 2024. URL: https://www.bishopbook.com/

Kamath Uday - Large Language Model, Springer 2024.

Lewis Tundall - Natural Language Processing with Transformers. O'Really Media, 2022. URL: https://github.com/nlp-with-transformers/notebooks

David Foster - Generative Deep Learning: Teaching Machines to Paint, Write, Compose and Play, O'Really Media, 2023.