ON LINEARLY COUPLED SYSTEMS OF NONLINEAR EQUATIONS INVOLVING CRITICAL EXPONENTIAL GROWTH

J.C. de Albuquerque

In this talk we study the existence of positive ground state solutions to the following class of coupled systems

\[
\begin{align*}
-\Delta u + u &= f_1(u) + \lambda(x)v, \quad x \in \mathbb{R}^2, \\
-\Delta v + v &= f_2(v) + \lambda(x)u, \quad x \in \mathbb{R}^2,
\end{align*}
\]

where the nonlinearities \(f_1(s) \) and \(f_2(s) \) have critical exponential growth motivated by a class of Trudinger-Moser inequality introduced by D.M. Cao (1992). Our approach is variational and based on minimization technique over the Nehari manifold.

\footnote{This is a joint work with J.M. do Ó - UFPB}