Super Espaços Vetoriais

Lucas Henrique Calixto

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

II Workshop de Álgebra da UFG-CAC

email: lhc.mat@gmail.com

Introdução

Super espaços vetoriais surgem naturalmente na teoria de supersimetria, no campo da física de partículas. Esse campo estuda as iterações entre particulas elementares, bósons e férmions. O nome 'super espaço' vem de supersimetria, e sua definição é motivada pela relação entre estes bósons e férmions.

Espaços Vetoriais

Vamos denotar por \mathbb{F} os corpos \mathbb{R} ou \mathbb{C} .

Definição 1: Um espaço vetorial V sobre um corpo \mathbb{F} é um conjunto munido de duas operações, + e \cdot , satisfazendo os seguinte axiomas:

- 1) Associatividade: u + (v + w) = (u + v) + w; 2) Comutatividade: u + v = v + u;
- 3) Elemento neutro da soma: Existe um elemento $0 \in V$ tal que v + 0 = v;
- 4) Elemento inverso da soma: Existe um elemento $-v \in V$ tal que v + (-v) = 0;
- 5) Compatibilidade da soma com o produto por escalar: Se $v \in V$ e $a,b \in \mathbb{F}$, então a.(b.v) = (ab).v;
- 6) Elemento neutro do produto escalar: Se $1 \in \mathbb{F}$ é o elemento identidade, então 1.v = v;
- 7) Distributividade do produto escalar com relação a soma de V: a.(u+v) = a.u + a.v;
- 8) Distributividade do produto com relação a soma de \mathbb{F} : (a+b).v=a.v+b.v; para quaisquer $u,v,w\in V$ e $a,b\in \mathbb{F}$.

Exemplo 2: Todo corpo F pode ser visto como um espaço vetorial sobre si mesmo. Por exemplo, R é um espaço vetorial sobre R, cuja soma e a multiplicação por escalar são a soma e a multiplicação usual de números reais.

Exemplo 3: Seja $M(m, n; \mathbb{F})$ o conjunto de todas as matrizes $m \times n$ com entradas em \mathbb{F} . Considere as seguintes operações $(+,\cdot)$

$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$

 $f(a_{ij}) = (fa_{ij}),$

para quaisquer matrizes (a_{ij}) , (b_{ij}) e escalar $f \in \mathbb{F}$. O conjunto $M(n, m; \mathbb{F})$ munido das operações acima é um espaço vetorial sobre \mathbb{F} .

Definição 4: Se V é um espaço vetorial e $W \subseteq V$ é um subconjunto que também é um espaço vetorial com a mesma soma e multiplicação por escalar de V, dizemos que W é um subespaço de V.

Exemplo 5: Sejam U e V dois espaços vetoriais sobre um corpo \mathbb{F} . Considere o conjunto $U \oplus V = \{(u,v) \mid u \in U, v \in V\}$ munido das operações $(+,\cdot)$ definidas por

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2)$$

 $c.(u_1, v_2) = (cu_1, cv_2),$

para quaisquer (u_1, v_1) , $(u_2, v_2) \in U \oplus V$, $c \in \mathbb{F}$. Tal conjunto é um espaço vetorial sobre \mathbb{F} , chamado de soma direta de U com V. Note que tanto U quanto V são subespaços vetoriais de $U \oplus V$.

Super Espaços

Considere o conjunto $\mathbb{Z}_2 = \{\bar{0}, \bar{1}\}$ munido da seguinte soma

$$\bar{0} + \bar{0} = \bar{0} \qquad \bar{0} + \bar{1} = \bar{1}
\bar{1} + \bar{0} = \bar{1} \qquad \bar{1} + \bar{1} = \bar{0},$$

e da seguinte multiplicação

$$\overline{0} \cdot \overline{0} = \overline{0}$$
 $\overline{0} \cdot \overline{1} = \overline{0}$
 $\overline{1} \cdot \overline{0} = \overline{0}$
 $\overline{1} \cdot \overline{1} = \overline{1}$

Com essas operações, \mathbb{Z}_2 é um corpo. Um super espaço vetorial é um espaço vetorial \mathbb{Z}_2 —graduado.

A escolha de \mathbb{Z}_2 na definição de super espaço é motivada pela forma como as partículas elementares, os bósons (spins inteiros) e férmions (spins meio-inteiros), iteragem entre si.

Definição 6: Um super espaço vetorial é um espaço vetorial V para o qual existem sub-espaços $V_{\bar{0}}$ e $V_{\bar{1}}$ tais que $V = V_{\bar{0}} \oplus V_{\bar{1}}$.

Observação 7: Todo espaço vetorial V é um super espaço. De fato, podemos escrever $V = V_{\bar{0}} \oplus V_{\bar{1}}$, com $V_{\bar{0}} = V$ e $V_{\bar{1}} = \{0\}$.

Exemplo 8: O conjunto dos números complexos $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ pode ser visto como um espaço vetorial sobre \mathbb{R} , onde

$$(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$$

 $c \cdot (a_1 + b_1 i) = ca_1 + cb_1 i,$

para quaisquer (a_1+b_1i) , $(a_2+b_2i) \in \mathbb{C}$, $c \in \mathbb{R}$. Observe que, tomando $\mathbb{C}_{\bar{0}} = \{a+0i : a \in \mathbb{R}\}$ e $\mathbb{C}_{\bar{1}} = \{0+bi : b \in \mathbb{R}\}$, temos que $\mathbb{C} = \mathbb{C}_{\bar{0}} \oplus \mathbb{C}_{\bar{1}}$ e portanto \mathbb{C} é um super espaço vetorial.

Exemplo 9: Considere o conjunto M(m|n) formado por matrizes da forma

$$\left\{ \left(\frac{A \mid B}{C \mid D} \right) \right\},$$

onde $A \in M(m; \mathbb{F})$, $B \in M(m, n; \mathbb{F})$, $C \in M(n, m; \mathbb{F})$ e $D \in M(n; \mathbb{F})$. Munido da soma e do produto por escalar como no Exemplo 3, M(m|n) se torna um espaço vetorial.

Tomando $M(m|n)_{\bar{0}}$ como o subespaço formado pelas matrizes tais que B=C=0 e $M(m|n)_{\bar{1}}$ como o espaço formado pelas matrizes tais que A=D=0, temos que $M(m|n)=M(m|n)_{\bar{0}}\oplus M(m|n)_{\bar{1}}$. Dessa forma M(m|n) é um super espaço vetorial.

Super Transformações

Definição 10: Considere dois super espaços vetoriais $U = U_{\bar{0}} \oplus U_{\bar{1}}$ e $V = V_{\bar{0}} \oplus V_{\bar{1}}$. Uma super transformação linear $T: U \to V$ é uma transformação linear, tal que $T(U_{\bar{0}}) \subseteq V_{\bar{0}}$ e $T(U_{\bar{1}}) \subseteq V_{\bar{1}}$.

Exemplo 11: Seja M(m|n) como no Exemplo 9, $\mathbb F$ como na Observação 7 e considere a função $str: M(m|n) \to \mathbb F$ dada por

$$str\left(\frac{A|B}{C|D}\right) = tr(A) - tr(D).$$

Essa função é uma super transformação linear, chamada de super traço. Ela é uma generalização da transformação linear traço.

Exemplo 12: Considere $V=\mathbb{C}$ como no Exemplo 9 e $W=\mathbb{R}$ como na Observação 7. Observe que $T:\mathbb{C}\to\mathbb{R}$ dada por

$$T(a+bi) = a+b$$

é uma transformação linear, mas $T(V_{\bar{1}}) \not\subseteq W_{\bar{1}}$. Logo T não é uma super transformação linear.

Referências

- [1] V. S. Varadarajan. Supersymmetry for Mathematicians, An Introduction (2004).
- [2] Calixto, Lucas H., Dissertação de Mestrado: Super algebras de funções (2013).

