Dominó de Lógica

Eliézer Reis Vicente, Thaís Maria do Nascimento Santana

Orientador: Prof. Dr. Igor dos Santos Lima

e-mail: eliezervicentte@gmail.com, thaismnsantana@gmail.com (Matemática Licenciatura UFG-CAC)

Introdução

A ideia do dominó para lógica surgiu a partir de um trabalho realizado em grupo de autoria do Prof. José Ricardo R. Zeni, veja [3]. O objetivo de criação deste jogo é fazer com que o estudante de lógica adquira habilidade com o cálculo proposicional. Assim ao jogar, o estudante naturalmente vai se familiarizar e memorizar algumas equivalências notáveis da lógica proposicional. O nosso intuito é transmitir esta ferramenta de ensino-aprendizagem a quem se interessar em estudar lógica formal de forma dinâmica e criativa. E é destinado a estudantes de ciências exatas e também pode despertar interesse de estudantes do ensino médio.

O Jogo

O jogo de dominó para lógica proposicional possui 28 peças e um total de 56 expressões, duas para cada peça. Podem participar de 2 a 4 jogadores: se optarem por 4 jogadores, cada participante receberá 7 peças, caso haja menos de 4 jogadores as peças restantes vão para um monte em separado. Como trabalharemos expressões lógicas, existem três resultados possíveis para uma expressão: 0 (falso), 1 (verdade) e a, para expressões equivalentes ao símbolo proposicional a. Para se jogar inicialmente, misturam-se todas as peças, com as expressões voltadas para baixo. Começa o jogo quem tiver a peça

o	О	1	1	a	a

ou conforme estipulado antes do início da partida. O próximo a jogar é quem estiver à direita de quem iniciou o jogo e assim por diante. Cada ponta do dominó possui uma expressão equivalente a **0**, **1** ou **a**. O jogador procura entre suas peças aquelas que têm expressões com resultados equivalentes as expressões que estão nas pontas do jogo de dominó e deve abaixar uma dessas peças. Para o jogo com 2 ou 3 participantes, caso um deles não possua uma peça para aquela jogada, o participante compra uma peça no monte restante, até encontrar uma que se encaixe no jogo. Para o jogo com 4 participantes, quando um não tiver a peça exigida, o jogador passa a vez para o próximo. O jogo termina quando um dos participantes colocar a última peça que está em sua mão.

Noções de Lógica

Proposição simples e composta

Uma proposição é simples se, e somente se, contiver uma única afirmação. Uma proposição é composta quando for constituída por uma sequência finita de pelo menos duas proposições simples.

Conectivos proposicionais

Conectivos são usados para interligar duas ou mais proposições: não, e, ou, se . . . , então . . . , se, e somente se . . .

Classificação dos conectivos

Conjunção: É o resultado da combinação de duas proposições ligadas pela palavra e, que será substituída pelo símbolo \wedge .

Disjunção: É o resultado da combinação de duas proposições ligadas pela palavra ou, que será substituída pelo símbolo \vee .

Condicional: Duas proposições formam uma condicional quando for possível colocálas na seguinte forma: Se (proposição 1), então (proposição 2). A proposição 1 é condicional suficiente e a proposição 2, condicionalmente necessária. O símbolo utilizado para ligar as duas proposições de uma condicional é \rightarrow .

Bicondicional: Toda proposição composta, formada por duas proposições, que pode ser colocadas na forma: (proposição 1) se, e somente se, (proposição 2)

- seu conectivo de ligação é representado pelo símbolo \leftrightarrow
- \bullet p é condicional necessária e suficiente para q ou
- ullet se q então p e reciprocamente.

Negação: Este conectivo não liga duas proposições, mas simplesmente nega a afirmação da proposição que o precede. O símbolo utilizado para esse conectivo é \neg (ou), colocado antes da letra que traduz a proposição. Leia-se: Não.

Observação: Para o Jogo de Dominó de Lógica, abusaremos da notação e utilizaremos (') para indicar a negação da proposição.

Importante: A ordem de prioridade dos conectivos é:

1. ¬

 $2.\vee, \wedge$

 $3. \rightarrow$

 $4. \leftrightarrow$

Tabela Verdade

		Conjunção	Disjunção	Condicional	Bicondicional		Negação
p	q	p∧q	p∨q	$p \rightarrow q$	$p \leftrightarrow q$	p	¬p
V	V	V	V	V	V	V	F
V	F	F	V	F	F	F	V
F	V	F	V	V	F		
F	F	F	F	V	V		

Classificação das Proposições

Tautologia: Dizemos que uma proposição composta é uma tautologia se, e somente se, seu valor lógico é sempre verdade (V), independentemente dos valores lógicos das proposições simples que a constituem.

Exemplo: $\neg(p \lor \neg p)$ é uma tautologia.

Contradição: Dizemos que uma proposição composta é uma contradição se, e somente se, o seu valor lógico for sempre falso (F), independentemente dos valores das proposições simples que a constituem.

Exemplo: $(p \lor q) \lor (\neg p \lor \neg q)$ é uma contradição.

Contingência: Uma proposição composta é uma contingência, quando o seu valor lógico pode ser (V) ou (F), dependendo do valor de suas proposições simples.

Exemplo: $p \to \neg p$ é uma contingência.

Algumas equivalências lógicas: As expressões utilizadas no dominó foram escolhidas de modo a destacar algumas das equivalências mais utilizadas em lógica formal (Leis da Álgebra das Proposições), conforme mostrado na tabela abaixo.

da Algebra das Prop	osições), comorme m	ostrado na tabela aba	alxo.					
Nome	Expressões equivalentes							
Propriedades da disjunção ∨								
Elemento Neutro	a∨F	\$	a					
Complementar	a∨a'	\$	V					
Idempotente	a∨a	\$	a					
Propriedade de V	$\mathbf{a} \lor \mathbf{V}$		V					
Propriedade da disjunção ^ em relação à conjunção >								
Distributiva	a∨(b∧c)	⇔	(a∨b)^(a∨c)					
Absorção	a∨(a∧b)	⇔	a					
Propriedade da negação '								
Dupla Negação	a"	⇔	a					
De Morgan	(a∨b)'	⇔	a'∧b'					
Propriedade da condicional →								
Forma Normal	a→b	⇔	a'√b					
Contrapositiva	a→b	⇔	b'→a'					

Referências

- [1] NETO, Lineu. Departamento de Matemática Álgebra I. Universidade de Brasília 1º/2004.
- [2] BISPO, Carlos Alberto Ferreira; CASTANHEIRA, Luiz Batista; FILHO, Oswaldo Melo Souza. *Introdução à Lógica Matemática*. São Paulo: Cengage Learning, 2014.
- [3] http://www.feg.unesp.br/ matematica/texto/domino.pdf

