Reticulados e Criptografía Pós-Quântica

Prof. Dr. Agnaldo José Ferrari Departamento de Matemática, Unesp, Bauru

IV Workshop de Álgebra da UFG-CAC

27 de Maio de 2015

• Criptografia clássica - RSA

• Criptografia clássica - RSA

• Criptografia Pós-Quântica - Motivação

• Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos

• Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos

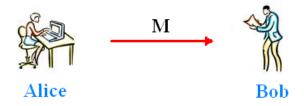
• Criptografia clássica - RSA

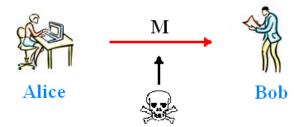
- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados

• Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados
- Referências

Criptografia clássica - RSA





Geração de chaves

Bob (destinatário) gera um par de chaves da seguinte maneira:

- 1- Escolhe de forma aleatória dois números primos p,q (grandes).
- 2- Computa n=pq.
- 3- Computa a função de Euler $\phi(n)$, onde

$$\phi(n)=\#\{a\in\mathbb{N}:\ 1\leq a\leq n\ \mathrm{e}\ \mathrm{mdc}(a,n)=1\}$$

Para
$$n=pq$$
, temos $\phi(n)=(p-1)(q-1)$.

- 4- Escolhe um inteiro e tal que $1 < e < \phi(n)$ e $mdc(e,\phi(n)) = 1$.
- 5- Escolhe d tal que $de \equiv 1 \pmod{\phi(n)}$.

Chave Pública: (n,e) Chave Privada: (n,d)

Encriptação

Para transformar uma mensagem M, onde 0 < M < n, numa mensagem cifrada c, Alice usa a chave pública (n,e) do destinatário (Bob) e computa

$$c \equiv M^e (mod \ n)$$

Encriptação

Para transformar uma mensagem M, onde 0 < M < n, numa mensagem cifrada c, Alice usa a chave pública (n,e) do destinatário (Bob) e computa

$$c \equiv M^e \pmod{n}$$

Decriptação

Para recuperar a mensagem M da mensagem cifrada c, o receptor (Bob) usa a sua chave privada (n,d) e computa

$$c^d(mod\ n) = M$$

Segurança

Uma maneira de derivar a Chave Privada a partir da Chave pública é decompor n em fatores primos, e na computação clássica não existe algoritmo que faça isto em tempo polinomial.

Segurança

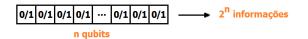
Uma maneira de derivar a Chave Privada a partir da Chave pública é decompor n em fatores primos, e na computação clássica não existe algoritmo que faça isto em tempo polinomial.

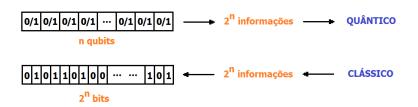
• Em 1994, Peter Shor (Lab. AT&T Bell) publica um artigo intitulado "Algorithms for Quantum Computation: Discrete Logarithms Factoring", onde apresenta um algorítmo quântico para a fatoração de números inteiros.

No Computador Quântico a unidade básica de informação é o *qubit* (*quantum bit*). Um *qubit* pode assumir os valores 0 ou 1, assim como um *bit* (*binary digit*) convencional. A diferença é que o *qubit* pode assumir ambos os valores 0 e 1 ao mesmo tempo, aqui faz-se uso direto do Princípio da Superposição, observado na Mecânica Quântica.

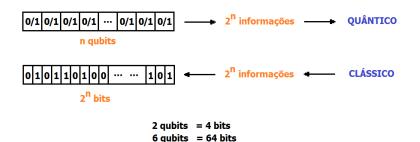
0/1	0/1	0/1	0/1	 0/1	0/1	0/1

n qubits





No Computador Quântico a unidade básica de informação é o *qubit* (*quantum bit*). Um *qubit* pode assumir os valores 0 ou 1, assim como um *bit* (*binary digit*) convencional. A diferença é que o *qubit* pode assumir ambos os valores 0 e 1 ao mesmo tempo, aqui faz-se uso direto do Princípio da Superposição, observado na Mecânica Quântica.



10 qubits = 1024 bits 20 qubits = 1048576 bits 40 qubits = 109950533632 bits

HISTÓRICO

HISTÓRICO

• (2001) I. Chung e N. Gershenfeld implementam o algoritmo de Shor na decomposição do número 15, numa máquina de 7 qubits.

Computador Quântico

HISTÓRICO

- (2001) I. Chung e N. Gershenfeld implementam o algoritmo de Shor na decomposição do número 15, numa máquina de 7qubits.
- (2006) R. Schutzhold e G. Schaller implementam o algoritmo de Shor na decomposição do número 21.

Computador Quântico

HISTÓRICO

- (2001) I. Chung e N. Gershenfeld implementam o algoritmo de Shor na decomposição do número 15, numa máquina de 7aubits.
- (2006) R. Schutzhold e G. Schaller implementam o algoritmo de Shor na decomposição do número 21.
- (2012) N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng e J. Du implementam o algoritmo de Shor na decomposição do número 143.

• Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados
- Área de pesquisa
- Referências

Motivação: Ameaças à Criptografia Clássica (RSA)

Motivação: Ameaças à Criptografia Clássica (RSA)

• Algoritmo de Shor (Fatoração de números inteiros)

Motivação: Ameaças à Criptografia Clássica (RSA)

- Algoritmo de Shor (Fatoração de números inteiros)
 - Derivação da Chave Privada a partir da Chave Pública.

Motivação: Ameaças à Criptografia Clássica (RSA)

- Algoritmo de Shor (Fatoração de números inteiros)
 - Derivação da Chave Privada a partir da Chave Pública.
 - Decriptação de textos cifrados.

Motivação: Ameaças à Criptografia Clássica (RSA)

- Algoritmo de Shor (Fatoração de números inteiros)
 - Derivação da Chave Privada a partir da Chave Pública.
 - Decriptação de textos cifrados.

Pesquisa:

Motivação: Ameaças à Criptografia Clássica (RSA)

- Algoritmo de Shor (Fatoração de números inteiros)
 - Derivação da Chave Privada a partir da Chave Pública.
 - Decriptação de textos cifrados.

Pesquisa: Criptossistemas resistentes a algoritmos quânticos.

Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados
- Área de pesquisa
- Referências

Criptossistemas robustos

Objetivos: Desenvolver sistemas criptográficos baseados em problemas intratáveis num computador quântico.

Criptossistemas robustos

Objetivos: Desenvolver sistemas criptográficos baseados em problemas intratáveis num computador quântico.

Fontes de Problemas Intratáveis

Criptossistemas robustos

Objetivos: Desenvolver sistemas criptográficos baseados em problemas intratáveis num computador quântico.

Fontes de Problemas Intratáveis

• Códigos Corretores de Erros.

Criptossistemas robustos

Objetivos: Desenvolver sistemas criptográficos baseados em problemas intratáveis num computador quântico.

Fontes de Problemas Intratáveis

- Códigos Corretores de Erros.
- Funções Hash.

Criptossistemas robustos

Objetivos: Desenvolver sistemas criptográficos baseados em problemas intratáveis num computador quântico.

Fontes de Problemas Intratáveis

- Códigos Corretores de Erros.
- Funções Hash.
- Reticulados.

Tópicos

• Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados
- Área de pesquisa
- Referências

Definição

Seja $\{v_1,v_2,\cdots,v_m\}$ um conjunto de vetores linearmente independentes no espaço vetorial \mathbb{R}^n , tal que $m\leq n$. O conjunto

$$\Lambda = \left\{ \sum_{i=1}^{m} \alpha_i v_i : \alpha_i \in \mathbb{Z} \right\}.$$

é chamado um **reticulado** de posto m, e o conjunto $\{v_1,v_2,\cdots,v_m\}$ é chamado uma **base** do reticulado Λ .

Definição

Seja $\{v_1,v_2,\ldots,v_m\}$ uma base do reticulado Λ . Se $v_i=(v_{i1},v_{i2},\cdots,v_{in})$, para $i=1,\cdots,m$, então a matriz

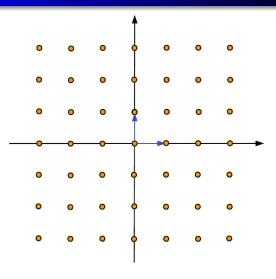
$$M = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ & & \ddots & \\ v_{m1} & v_{m2} & \cdots & v_{mn} \end{pmatrix}$$

é chamada uma matriz geradora para o reticulado Λ .

Definição

Seja M uma matriz geradora para o reticulado Λ . Então

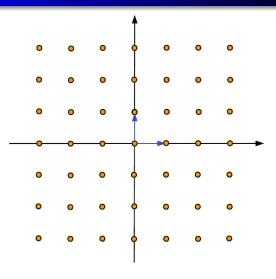
$$\Lambda = \{ xM \mid x \in \mathbb{Z}^m \}$$



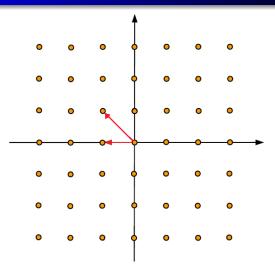
$$\mathsf{B} {=} \{(1,0),(0,1)\}$$

Observação

A matriz geradora de um reticulado não é única, dado um reticulado Λ gerado por uma base B, uma base C será base deste reticulado se, e somente se, a respectiva matriz mudança de base possui entradas inteiras e determinante ± 1 .



$$\mathsf{B} {=} \{(1,0),(0,1)\}$$



$$\mathsf{B} {=} \{ (-1,0), (-1,-1) \}$$

Definição

Um empacotamento esférico no \mathbb{R}^n é uma distribuição de esferas de mesmo raio de forma que a intersecção de quaisquer duas esferas tenha no máximo um ponto.

Definição

Um empacotamento esférico no \mathbb{R}^n é uma distribuição de esferas de mesmo raio de forma que a intersecção de quaisquer duas esferas tenha no máximo um ponto.

Definição

Um empacotamento reticulado é um empacotamento em que o conjunto dos centros das esferas formam um reticulado Λ do \mathbb{R}^n .

Reticulados

Definição

Dado um empacotamento no \mathbb{R}^n associado a um reticulado Λ com base $B = \{v_1, \dots, v_n\}$, definimos a sua **densidade de empacotamento** como sendo a proporção do espaço \mathbb{R}^n coberta pela união das esferas.

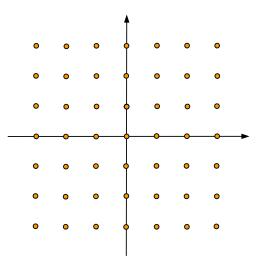
Reticulados

Definição

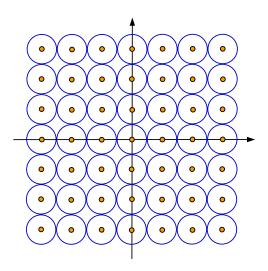
Dado um empacotamento no \mathbb{R}^n associado a um reticulado Λ com base $B = \{v_1, \dots, v_n\}$, definimos a sua densidade de **empacotamento** como sendo a proporção do espaço \mathbb{R}^n coberta pela união das esferas.

Definicão

O raio de empacotamento de um reticulado Λ é o raio de qualquer uma das esferas do empacotamento.

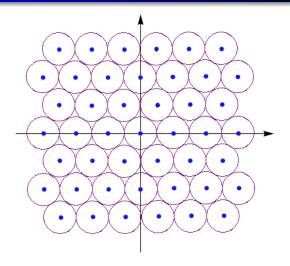


$$B = \{(1,0), (0,1)\}$$



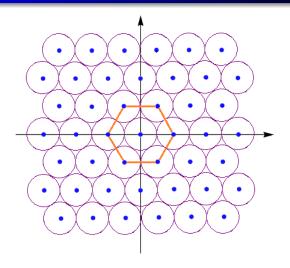
$$\mathsf{B} {=} \{(1,0),(0,1)\}$$

Reticulado Hexagonal



$$\mathsf{B} \!=\! \! \{(1,0), (1/2, \sqrt{3}/2)\}$$

Reticulado Hexagonal



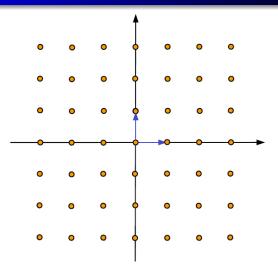
$$\mathsf{B} \!=\! \! \{(1,0), (1/2, \sqrt{3}/2)\}$$

Definição

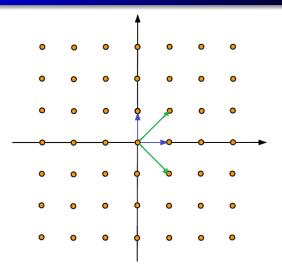
Seja M uma matriz geradora de um reticulado $\Lambda.$ Um sub-reticulado de Λ é dado por

$$\Lambda' = \{xBM; \ x \in \mathbb{Z}^n\}$$

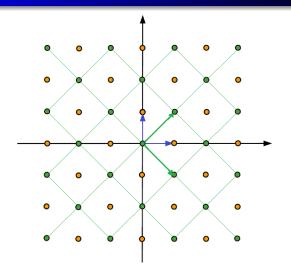
onde B é uma matriz de ordem n com entradas inteiras.



$$M = \{(1,0),(0,1)\}$$



$$\mathsf{B} \!=\! \{(1,1),(1,-1)\}$$



$$\mathsf{B} \!=\! \{(1,1),(1,-1)\}$$

Problemas intratáveis em reticulados

Problemas intratáveis em reticulados

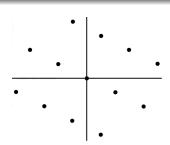
Shortest Vector Problem - SVP

Dada uma base $B \in \mathbb{Z}^{m \times n}$, encontrar um vetor xB $(x \in \mathbb{Z}^m)$ não nulo no reticulado gerado por B tal que $||xB|| \le ||yB||, \forall y \in \mathbb{Z}^m - \{0\}.$

Problemas intratáveis em reticulados

Shortest Vector Problem - SVP

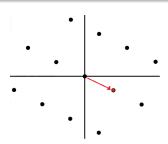
Dada uma base $B \in \mathbb{Z}^{m \times n}$, encontrar um vetor xB $(x \in \mathbb{Z}^m)$ não nulo no reticulado gerado por B tal que $||xB|| \le ||yB||, \forall y \in \mathbb{Z}^m - \{0\}.$



Problemas intratáveis em reticulados

Shortest Vector Problem - SVP

Dada uma base $B \in \mathbb{Z}^{m \times n}$, encontrar um vetor xB $(x \in \mathbb{Z}^m)$ não nulo no reticulado gerado por B tal que $||xB|| \le ||yB||, \forall y \in \mathbb{Z}^m - \{0\}.$



Problemas intratáveis em reticulados

Problemas intratáveis em reticulados

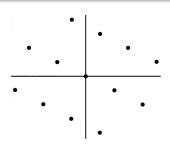
Closest Vector Problem - CVP

Dada uma base $B\in\mathbb{Z}^{m\times n}$ para um reticulado e um vetor-alvo $w\in\mathbb{R}^n$, encontrar um vetor xB $(x\in\mathbb{Z}^m)$ mais próximo de w no reticulado gerado por B, isto é, $||xB-w||\leq ||yB-w||,\ \forall y\in\mathbb{Z}^m.$

Problemas intratáveis em reticulados

Closest Vector Problem - CVP

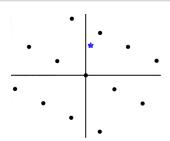
Dada uma base $B\in\mathbb{Z}^{m\times n}$ para um reticulado e um vetor-alvo $w\in\mathbb{R}^n$, encontrar um vetor xB $(x\in\mathbb{Z}^m)$ mais próximo de w no reticulado gerado por B, isto é, $||xB-w||\leq ||yB-w||, \ \forall y\in\mathbb{Z}^m.$



Problemas intratáveis em reticulados

Closest Vector Problem - CVP

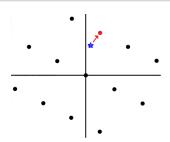
Dada uma base $B\in\mathbb{Z}^{m\times n}$ para um reticulado e um vetor-alvo $w\in\mathbb{R}^n$, encontrar um vetor xB $(x\in\mathbb{Z}^m)$ mais próximo de w no reticulado gerado por B, isto é, $||xB-w||\leq ||yB-w||, \ \forall y\in\mathbb{Z}^m.$



Problemas intratáveis em reticulados

Closest Vector Problem - CVP

Dada uma base $B\in\mathbb{Z}^{m\times n}$ para um reticulado e um vetor-alvo $w\in\mathbb{R}^n$, encontrar um vetor xB $(x\in\mathbb{Z}^m)$ mais próximo de w no reticulado gerado por B, isto é, $||xB-w||\leq ||yB-w||, \ \forall y\in\mathbb{Z}^m.$

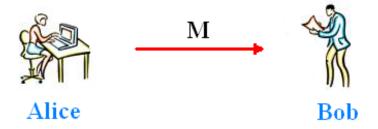


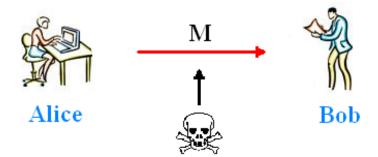
Tópicos

Criptografia clássica - RSA

- Criptografia Pós-Quântica Motivação
- Criptografia Pós-Quântica Criptossistemas robustos
- Reticulados Conceitos básicos
- Criptossistema baseado em reticulados
- Área de pesquisa
- Referências

Criptossistema baseado em reticulados





Geração de chaves

Bob (destinatário) gera um par de chaves da seguinte maneira:

- 1— Escolhe um reticulado Λ com matriz geradora M, $n \times n$, $n \geq 500$, raio de empacotamento r, na qual ele conhece um algoritmo eficiente de decodificação.
- 2— Escolhe uma matriz S, matriz randômica inversível com entradas inteiras.
- 3— Computa A = SM.

Chave Pública: (A, r)

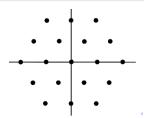
Chave Privada: (S^{-1}, M^{-1})

Encriptação

- 1 Codifica a mensagem m como um vetor
- $x = (x_1, x_2, \cdots, x_n), x_j \in \mathbb{Z}.$ 2- Computa um vetor c' = xA.
- 3— Computa um vetor erro e tal que ||e|| < r.
- 4- Envia o texto cifrado c = c' + e = xA + e.
- 5— De posse de c, um invasor não consegue descobrir c' (CVP).

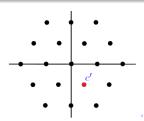
Encriptação

- 1— Codifica a mensagem m como um vetor
 - $x = (x_1, x_2, \cdots, x_n), x_j \in \mathbb{Z}$
- 2— Computa um vetor c' = xA.
- 3— Computa um vetor erro e tal que ||e|| < r.
- 4- Envia o texto cifrado c = c' + e = xA + e.
- 5— De posse de c, um invasor não consegue descobrir c' (CVP).



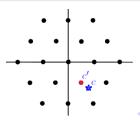
Encriptação

- 1— Codifica a mensagem m como um vetor
 - $x = (x_1, x_2, \cdots, x_n), x_j \in \mathbb{Z}$
- 2— Computa um vetor c' = xA.
- 3- Computa um vetor erro e tal que ||e|| < r.
- 4- Envia o texto cifrado c = c' + e = xA + e.
- 5— De posse de c, um invasor não consegue descobrir c' (CVP).



Encriptação

- 1— Codifica a mensagem m como um vetor
 - $x = (x_1, x_2, \cdots, x_n), x_j \in \mathbb{Z}$
- 2— Computa um vetor c' = xA.
- 3- Computa um vetor erro e tal que ||e|| < r.
- 4- Envia o texto cifrado c = c' + e = xA + e.
- 5— De posse de c, um invasor não consegue descobrir c' (CVP).



Decriptação

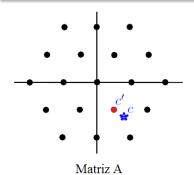
Bob recebe o texto cifrado \emph{c} e segue os seguintes passos:

- 1— Usa o algoritmo de decodificação para o reticulado Λ para decodificar $c=xSM+e=\hat{x}M+e$ em $\hat{c}=\hat{x}M$, onde $\hat{x}=xS$.
- 2— Usa a chave privada e faz $\hat{c}M^{-1}S^{-1} = xSMM^{-1}S^{-1} = x$.

Decriptação

Bob recebe o texto cifrado \emph{c} e segue os seguintes passos:

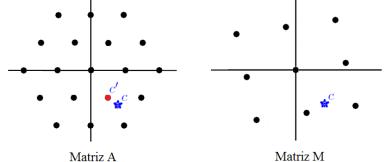
- 1- Usa o algoritmo de decodificação para o reticulado Λ para decodificar $c=xSM+e=\hat{x}M+e$ em $\hat{c}=\hat{x}M$, onde $\hat{x}=xS$.
- 2- Usa a chave privada e faz $\hat{c}M^{-1}S^{-1} = xSMM^{-1}S^{-1} = x$.



Decriptação

Bob recebe o texto cifrado c e segue os seguintes passos:

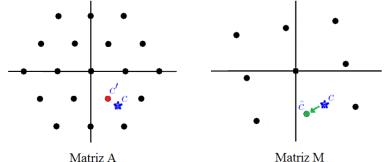
- 1- Usa o algoritmo de decodificação para o reticulado Λ para decodificar $c=xSM+e=\hat{x}M+e$ em $\hat{c}=\hat{x}M$, onde $\hat{x}=xS$.
- **2** Usa a chave privada e faz $\hat{c}M^{-1}S^{-1} = xSMM^{-1}S^{-1} = x$.



Decriptação

Bob recebe o texto cifrado c e segue os seguintes passos:

- 1- Usa o algoritmo de decodificação para o reticulado Λ para decodificar $c=xSM+e=\hat{x}M+e$ em $\hat{c}=\hat{x}M$, onde $\hat{x}=xS$.
- **2** Usa a chave privada e faz $\hat{c}M^{-1}S^{-1} = xSMM^{-1}S^{-1} = x$.



Dificuldades

1- Reticulado em dimensão alta com algoritmo de decodificação eficiente.

Dificuldades

- 1- Reticulado em dimensão alta com algoritmo de decodificação eficiente.
 - Reticulados gerados por códigos corretores de erros.

Dificuldades

- 1- Reticulado em dimensão alta com algoritmo de decodificação eficiente.
 - Reticulados gerados por códigos corretores de erros.
 - Trelica minimal de reticulados.

Dificuldades

2- Tamanho das chaves: A, S^{-1}, M^{-1} .

Dificuldades

- 2- Tamanho das chaves: A, S^{-1}, M^{-1} .
 - Matrizes geradoras triangulares (Forma Normal de Hermite).

Dificuldades

- 2- Tamanho das chaves: A, S^{-1}, M^{-1} .
 - Matrizes geradoras triangulares (Forma Normal de Hermite).
 - Matrizes geradores de reticulados cíclicos.

Matrizes geradoras triangulares (Forma Normal de Hermite)

Matrizes geradoras triangulares (Forma Normal de Hermite)

Forma Normal de Hermite

Dada uma matriz M com entradas inteiras, existe uma matriz unimodular U tal que A=UM, com A triangular superior e entradas inteiras.

Matrizes geradoras triangulares (Forma Normal de Hermite)

Forma Normal de Hermite

Dada uma matriz M com entradas inteiras, existe uma matriz unimodular U tal que A=UM, com A triangular superior e entradas inteiras.

Exemplo

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 6 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 4 & -4 & -2 & -1 \\ 3 & -3 & -2 & -1 \\ 5 & -5 & -3 & -1 \\ 6 & -5 & -2 & -1 \end{pmatrix}}_{D} \cdot \underbrace{\begin{pmatrix} -2 & 1 & -1 & 3 \\ -3 & 2 & -1 & 2 \\ 2 & -1 & -1 & 1 \\ -1 & -2 & 1 & 0 \end{pmatrix}}_{M}$$

Matrizes geradoras triangulares (Forma Normal de Hermite)

Forma Normal de Hermite

Dada uma matriz M com entradas inteiras, existe uma matriz unimodular U tal que A=UM, com A triangular superior e entradas inteiras.

Exemplo

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 6
\end{pmatrix} = \begin{pmatrix}
4 & -4 & -2 & -1 \\
3 & -3 & -2 & -1 \\
5 & -5 & -3 & -1 \\
6 & -5 & -2 & -1
\end{pmatrix} \cdot \begin{pmatrix}
-2 & 1 & -1 & 3 \\
-3 & 2 & -1 & 2 \\
2 & -1 & -1 & 1 \\
-1 & -2 & 1 & 0
\end{pmatrix}$$

Matrizes geradores de reticulados cíclicos

Reticulados cíclicos

Um reticulado Λ é dito **cíclico** se dado um vetor $(a_1,a_2,\cdots,a_n)\in\Lambda$, então $(a_2,a_3,\cdots,a_n,a_1)\in\Lambda$.

Matrizes geradores de reticulados cíclicos

Reticulados cíclicos

Um reticulado Λ é dito **cíclico** se dado um vetor $(a_1,a_2,\cdots,a_n)\in\Lambda$, então $(a_2,a_3,\cdots,a_n,a_1)\in\Lambda$.

Exemplo

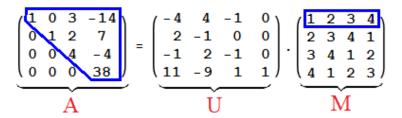
$$\underbrace{\begin{pmatrix} 1 & 0 & 3 & -14 \\ 0 & 1 & 2 & 7 \\ 0 & 0 & 4 & -4 \\ 0 & 0 & 0 & 38 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} -4 & 4 & -1 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 11 & -9 & 1 & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix}}_{M}$$

Matrizes geradores de reticulados cíclicos

Reticulados cíclicos

Um reticulado Λ é dito **cíclico** se dado um vetor $(a_1,a_2,\cdots,a_n)\in\Lambda$, então $(a_2,a_3,\cdots,a_n,a_1)\in\Lambda$.

Exemplo



Referencias

- D. J. Bernstein, J. Buchmann, E. Dahmen, Post-Quantum Cryptography, Hardcover, 2009.
- J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York, 1998.
- G. D. Forney Jr., Final report on a coding system design for advanced solar missions, Contract NAS2-3637, NASA Ames Research Center. Moffet Field, CA, Dec 1967.
- A.H. Banihashemi and I.F. Blake, Trellis complexity and minimal trellis of lattices, IEEE Trans. Inform. Theory, vol IT-44, n 5, pp. 1829-1847, Sep. 1998.