Lecture 32: The Hückel Method

The material in this lecture covers the following in Atkins.

- 14.0 The Hückel approximation
 - (a) The secular determinant
 - (b) Ethene and frontier orbitals
 - (c) Butadiene and p-electron binding energy
 - (d) benzene and aromatic stability

Lecture on-line
Huckel Theory (PowerPoint)
Huckel Theory (PDF)

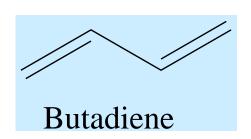
Handout for this lecture

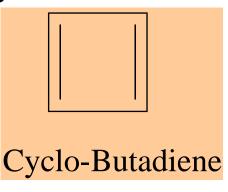
Conjugated systems

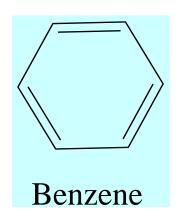
The Hückel approximation can be used for conjugated molecules in which there is an alternation of single and double bonds along a chain

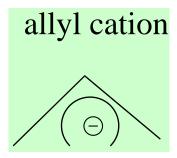
We shall also use it for the π -bond in ethylene

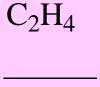
One example is the conjugated π -systems











Molecular orbital theory

In molecular orbital theory we write our orbitals as linear combinations of atomic orbitals:

$$\psi_{\mathbf{k}}$$
(1) = $\sum_{i=1}^{i=n} C_i \chi_i$ (1)

We next require that the corresponding orbital energies

$$W(C_{1},C_{2},...C_{n}) = \frac{\int \psi_{k}(1)\hat{H}\psi_{k}dv}{\int \psi_{k}(1)\psi_{k}(1)dv} |H_{ik} - WS_{ik}| = 0$$

be optimal with respect to {C₁, C₂,..C_n}

or :
$$\frac{\delta W}{\delta C_i} = 0$$
; i = 1,...,n

This leads to the set of homogeneous equations:

$$\sum_{k=1}^{k=n} C_k |H_{ik} - WS_{ik}| = 0$$
 k=1

For which the secular determinant must be zero

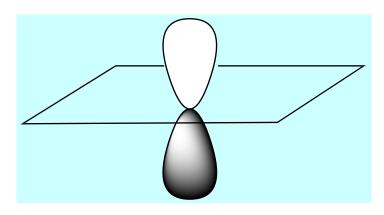
$$|H_{ik} - WS_{ik}| = 0$$

i = 1,2,...,n; k = 1,2,...,n

In order to obtain non-trivial solutions

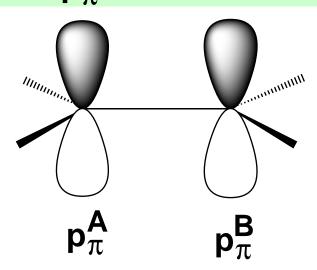
Conjugated systems

We are going to use as our atomic orbitals a single p $_{\pi}$ function on each carbon atom.

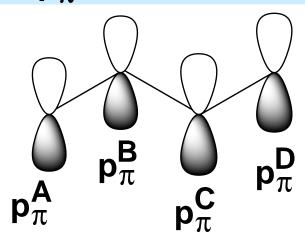


The p_{π} orbital is the p-function perpendicular to the molecular plane

For ethylene we have two p_{π} orbitals

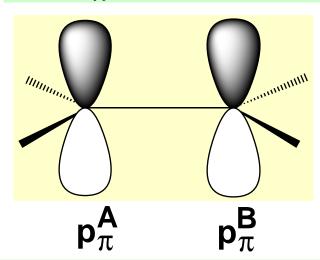


For butadiene we have four p_{π} orbitals



Ethylene

For ethylene we have two p_{π} orbitals



For ethylene we can use linear variation theory to obtain a set of linear homogeneous equations

k=n

$$\sum C_k |H_{ik} - WS_{ik}| = 0$$

k=1
i = 1,2 and n = 1,2

Non-trivial solutions are only possible if the secular determinant is zero

$$\begin{vmatrix} H_{11} - E & H_{12} - ES_{12} \\ H_{21} - ES_{21} & H_{11} - E \end{vmatrix} = 0$$

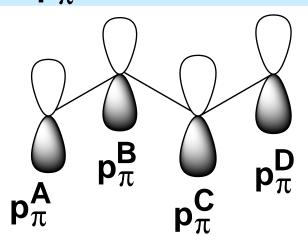
Each of the two roots W = E_i i = 1,2 can be substituted into the set of linear equations to obtain orbital coefficients

$$\psi^{i} = \sum_{k=1}^{k=n} C_{i}^{k} p_{\pi}^{k}$$

$$k = 1, 2 ; i = 1, 2$$

Butadiene

For butadiene we have four p_{π} orbitals



For butadiene we can use linear variation theory to obtain a set of linear homogeneous equations

$$\begin{aligned} & k=n \\ & \sum C_k |H_{ik} - WS_{ik}| = 0 \\ & k=1 \end{aligned}$$
 i = 1,4 and n = 1,4

Non-trivial solutions are only possible if the secular determinant is zero

Each of the two roots W = E_i i = 1,4 can be substituted into the set of linear equations to obtain orbital coefficients

$$\psi^{i} = \sum_{k=1}^{k=n} C_{i}^{k} p_{\pi}^{k}$$

$$k=1,4 ; i=1,4$$

The Hückel approximation

1. all overlaps are set to zero $S_{ij} = 0$

$$\begin{vmatrix} H_{11} - E & H_{12} - ES_{12} \\ H_{21} - ES_{21} & H_{11} - E \end{vmatrix} = 0$$
 $\begin{vmatrix} H_{11} - E & H_{12} \\ H_{21} & H_{11} - E \end{vmatrix} = 0$

The Hückel approximation

- 1. All overlaps are set to zero $S_{ij} = 0$
- 2. All diagonal terms are set equal to Coulomb integral α

$$\begin{vmatrix} H_{11} - E & H_{12} \\ H_{21} & H_{11} - E \end{vmatrix} = 0 \qquad \begin{vmatrix} \alpha - E & H_{12} \\ H_{21} & \alpha - E \end{vmatrix} = 0$$

$$\begin{vmatrix} H_{11} - E & H_{12} \\ H_{21} & H_{22} - E & H_{23} \\ H_{31} & H_{32} & H_{33} - E & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{vmatrix} = 0$$

$$|\alpha - E & H_{12} & H_{13} & H_{14} \end{vmatrix}$$

H₄₂

H₄₁

 H_{43}

 α - E

The Hückel approximation

- 1. All overlaps are set to zero $S_{ij} = 0$
- 2 4
- 2. All diagonal terms are set equal to Coulomb integral α
- 3. All resonance integrals between non neighbours are set to zero

$$\begin{vmatrix} \alpha - E & H_{12} \\ H_{21} & \alpha - E \end{vmatrix} = 0$$

$$\begin{vmatrix} \alpha - \mathsf{E} & \mathsf{H}_{12} \\ \mathsf{H}_{21} & \alpha - \mathsf{E} \end{vmatrix} = \mathbf{0}$$

$$\begin{vmatrix} \alpha - E & H_{12} & 0 & 0 \\ H_{21} & \alpha - E & H_{23} & 0 \\ 0 & H_{32} & \alpha - E & H_{34} \\ 0 & 0 & H_{43} & \alpha - E \end{vmatrix} = 0$$

The Hückel approximation

- 1. All overlaps are set to zero $S_{ii} = 0$
- 1 3
- 2. All diagonal terms are set equal to Coulomb integral α
- 3. All resonance integrals between non neighbours are set to zero
- 4. All remaining resonance integrals are set to β

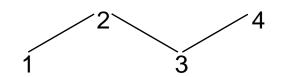
$$\begin{vmatrix} \alpha - E & H_{12} \\ H_{21} & \alpha - E \end{vmatrix} = 0 \begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0$$

$$\begin{vmatrix} \alpha - E & H_{12} & 0 & 0 \\ H_{21} & \alpha - E & H_{23} & 0 \\ 0 & H_{32} & \alpha - E & H_{34} \\ 0 & 0 & H_{43} & \alpha - E \end{vmatrix} = 0$$

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta & 0 \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

The Hückel approximation

1. All overlaps are set to zero $S_{ij} = 0$



- 2. All diagonal terms are set equal to Coulomb integral α
 - 3. All resonance integrals between non neighbours are set to zero
 - 4. All remaining resonance integrals are set to β

$$\begin{vmatrix} \alpha - \mathbf{E} & \beta \\ \beta & \alpha - \mathbf{E} \end{vmatrix} = \mathbf{0}$$

$$\begin{vmatrix} \alpha - \mathbf{E} & \beta & \mathbf{0} & \mathbf{0} \\ \beta & \alpha - \mathbf{E} & \beta & \mathbf{0} \\ \mathbf{0} & \beta & \alpha - \mathbf{E} & \beta \\ \mathbf{0} & \mathbf{0} & \beta & \alpha - \mathbf{E} \end{vmatrix} = \mathbf{0}$$

Solutions for ethylene

$$\begin{vmatrix} \alpha - \mathbf{E} & \beta \\ \beta & \alpha - \mathbf{E} \end{vmatrix} = (\alpha - \mathbf{E})^2 - \beta^2 = \mathbf{0}$$

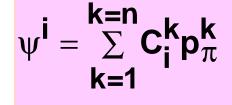
$$(\alpha - E)^2 = \beta^2; (\alpha - E) = \pm \beta$$

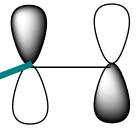
$$E_1 = \alpha + \beta$$
 (α and β negative)

$$E_2 = \alpha - \beta$$
 (α and β negative)

$$\sum_{k=1}^{k=n} C_k |H_{ik} - WS_{ik}| = 0$$
k=1

$$i = 1,2$$
 and $n = 1,2$





$$k = 1, 2 ; i = 1, 2$$

$$\frac{2\pi * \quad \alpha - \beta}{C2p}$$

$$\frac{1\pi}{R} \frac{\alpha + \beta}{A}$$

$$\psi_2 = -\frac{1}{\sqrt{2}}p_{\pi}^1 + \frac{1}{\sqrt{2}}p_{\pi}^2$$

$$\psi_1 = \frac{1}{\sqrt{2}} p_{\pi}^1 + \frac{1}{\sqrt{2}} p_{\pi}^2$$

Solutions for butadiene

$$\begin{vmatrix} \alpha - \mathbf{E} & \beta & \mathbf{0} & \mathbf{0} \\ \beta & \alpha - \mathbf{E} & \beta & \mathbf{0} \\ \mathbf{0} & \beta & \alpha - \mathbf{E} & \beta \\ \mathbf{0} & \mathbf{0} & \beta & \alpha - \mathbf{E} \end{vmatrix} =$$

$$(\alpha - E)^2 \begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} - (\alpha - E)\beta \begin{vmatrix} \beta & \beta \\ 0 & (\alpha - E) \end{vmatrix}$$

$$-\beta^{2}\begin{vmatrix} \alpha - \mathbf{E} & \beta \\ \beta & \alpha - \mathbf{E} \end{vmatrix} + \beta^{2}\begin{vmatrix} \mathbf{0} & \beta \\ \mathbf{0} & (\alpha - \mathbf{E}) \end{vmatrix} =$$

$$(\alpha - E)^4 - (\alpha - E)^2 \beta^2 - (\alpha - E)^2 \beta^2 - (\alpha - E)^2 \beta^2$$

$$(\alpha - E)^4 - 3(\alpha - E)^2 \beta^2 + \beta^4 = 0$$

Solutions for butadiene

$$(\alpha - E)^4 - 3(\alpha - E)^2 \beta^2 + \beta^4 = 0$$

Dividing by
$$\beta^2$$
: $\frac{(\alpha - E)^4}{\beta^4} - 3\frac{(\alpha - E)^2}{\beta^2} + 1 = 0$

Introducing:
$$x = \frac{(\alpha - E)^2}{\beta^2}$$
 $\begin{cases} x^2 - 3x + 1 = 0 \\ x = 2.62 ; x = 0.38 \end{cases}$

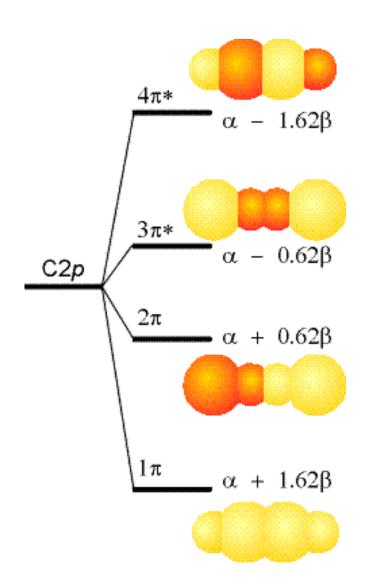
$$x^2-3x+1=0$$

$$x = 2.62$$
; $x = 0.38$

Thus

$$\mathbf{E} = \alpha \pm 1.62\beta$$
 and $\alpha \pm 0.62\beta$

The Hückel method Solutions for butadiene



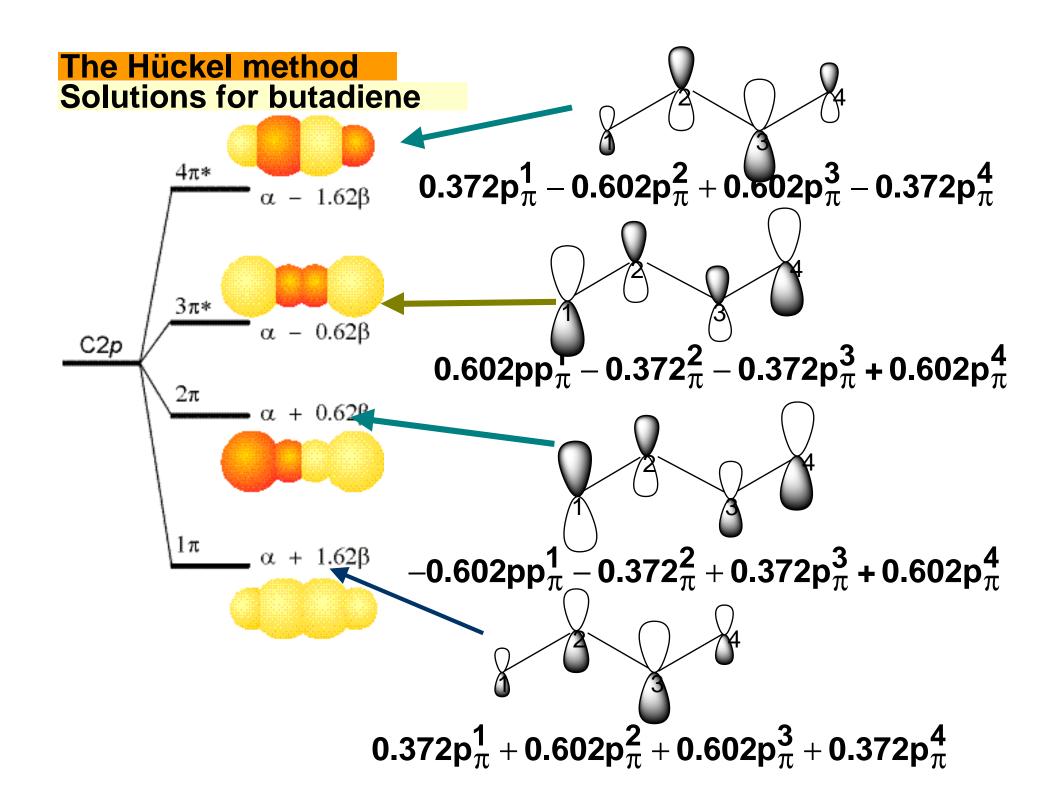
$$\sum_{k=1}^{k=n} C_k |H_{ik} - WS_{ik}| = 0$$
k=1

i = 1,4 and n = 1,4

$$\psi^{i} = \sum_{k=1}^{k=n} C_{i}^{k} p_{\pi}^{k}$$

$$k=1,4 ; i=1,4$$

The Hückel molecular orbital energy levels of butadiene and the top view of the corresponding π orbitals. The four p electrons (one supplied by each C) occupy the two lower π orbitals. Note that the orbitals are delocalized.

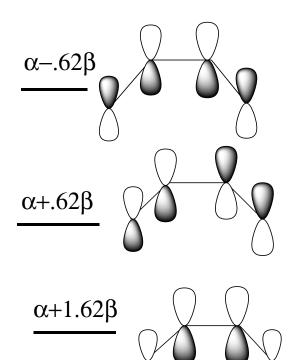


Solutions for butadiene

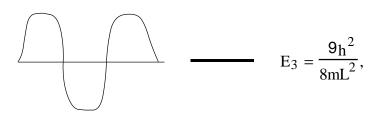
Comparison between PIB and Huckel treatment of butadiene

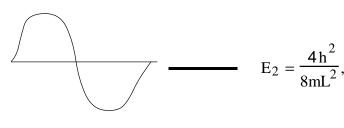
Same nodal structure

Huckel

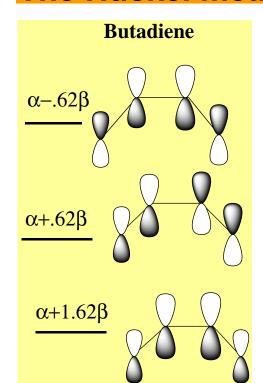


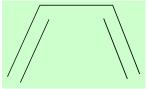
FMO



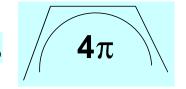


Solutions for butadiene





Or two delocalized π - bonds



$$E_{\pi}(Bu) - 2E_{\pi}(Et)$$

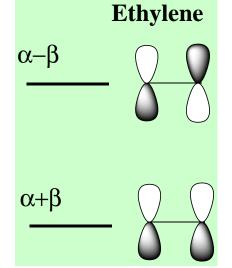
delocalization energy

$$E_{\pi}(Bu) = 2(\alpha + 1.62\beta) + 2(\alpha + .62\beta)$$

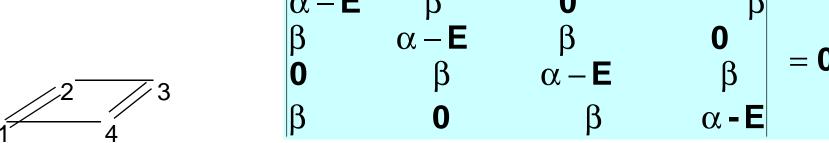
$$= 4\alpha + 4.48\beta$$

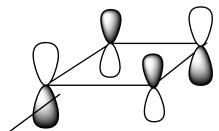
$$2E_{\pi}(Et) = 4(\alpha + \beta) = 4\alpha + 4\beta$$

Delocalization energy =
$$.48\beta$$
 (-36 kJ mol⁻¹)

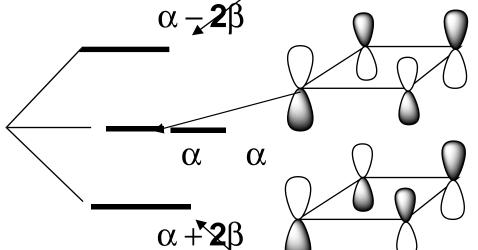


Cyclobutadiene





$0.5p_{\pi}^{1} - 0.5p_{\pi}^{2} + 0.5p_{\pi}^{3} - 0.5p_{\pi}^{4}$

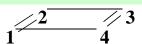


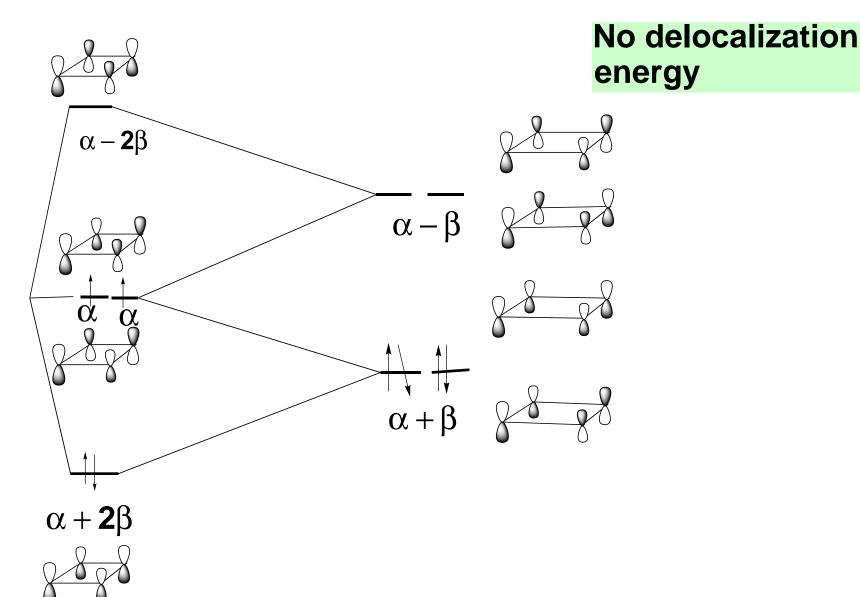
$$0.5p_{\pi}^{1} - 0.5p_{\pi}^{2} - 0.5p_{\pi}^{3} + 0.5p_{\pi}^{4}$$

$$0.5p_{\pi}^{1} + 0.5p_{\pi}^{2} - 0.5p_{\pi}^{3} - 0.5p_{\pi}^{4}$$

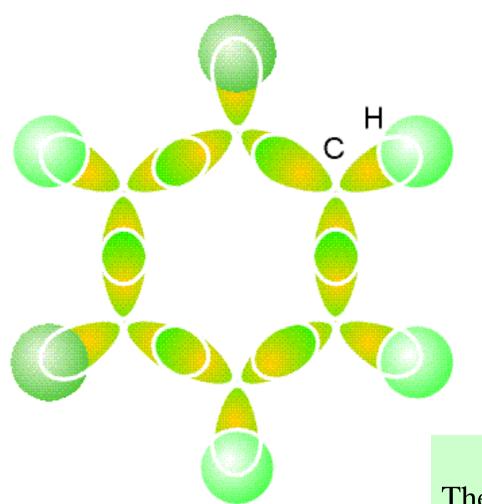
$$0.5p_{\pi}^{1} + 0.5p_{\pi}^{2} + 0.5p_{\pi}^{3} + 0.5p_{\pi}^{4}$$

Cyclobutadiene

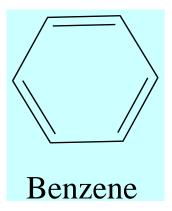




Benzene



The C-C and C-H σ-orbitals



The framework of benzene is formed by the overlap of Csp2 hybrids, which fit without strain into a hexagonal arrangement.

Benzene

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha - E & \beta & 0 & & & \\ \beta & 0 & \alpha - E & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha - E & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha - E & \beta \\ \beta & 0 & 0 & \beta & \beta & \alpha - E \end{vmatrix} = 0$$

E =
$$\alpha \pm 2\beta$$
; $\alpha \pm \beta$; $\alpha \pm \beta$

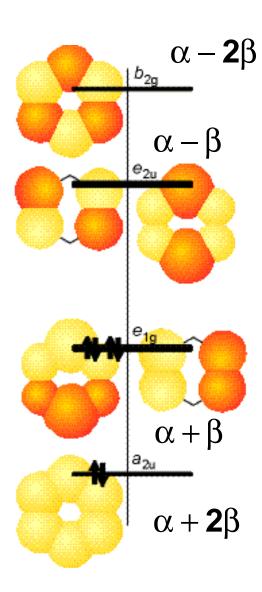
k=n

$$\sum C_k |H_{ik} - WS_{ik}| = 0$$
k=1
i = 1,6 and n = 1,6

$$\psi^{i} = \sum_{k=1}^{k=n} C_{i}^{k} p_{\pi}^{k}$$

$$k = 1, 6 ; i = 1, 6$$

Benzene



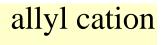
$$2(\alpha + 2\beta) + 4(\alpha + \beta) - 6(\alpha + \beta) = 2\beta$$

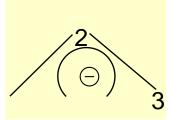
-150 kJ mol⁻¹

What you should learn from this lecture

- 1. Be able to construct the secular determinant for a conjugated π -system within the Huckel approximation
 - 2. Be able to calculate orbital energies for simple systems
- 3. You will not be asked to find the molecular orbitals. However, you should be able to discuss provided orbitals in terms of bonding and anti-bonding interactions

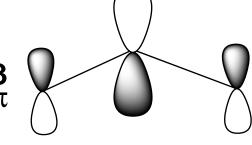
The allyl system

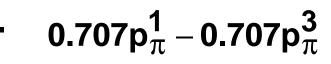


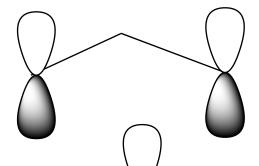


$$\begin{vmatrix} \alpha - \mathbf{E} \beta & \mathbf{0} \\ \beta & \alpha - \mathbf{E} \beta \\ \mathbf{0} & \beta & \alpha - \mathbf{E} \end{vmatrix} = \mathbf{0}$$

$$\alpha - 1.42 \alpha$$
 $0.5p_{\pi}^{1} - 0.707p_{\pi}^{2} + 0.5p_{\pi}^{3}$







$$\alpha$$
 + 1.42 α

α

$$0.5p_{\pi}^1 + 0.707p_{\pi}^2 + 0.5p_{\pi}^3$$