Universidade Federal de Goiás Instituto de Química Coordenação de Pós-graduação

EXAME DE SELEÇÃO DO MESTRADO EM QUÍMICA - 2013/1 -

IDENTIFICAÇÃO DO CANDIDATO	
Número de Inscrição:	_

INSTRUÇÕES IMPROTANTES:

- identifique **TODAS** as folhas com seu número de inscrição;
- a prova terá duração de 4 horas;
- responda oito (08) questões escolhendo APENAS duas (02) de cada conjunto designado pelas letras A, B, C e D.
- indiquem, no cabeçalho, as questões a serem corrigidas.
- no caso de responderem **03 (três)** em cada conjunto (sem indicação) serão corrigidas apenas duas em ordem numérica.
- a prova deve ser realizada sem consulta:
- responda às questões nas páginas em que elas estão impressas (o uso do verso da página é permitido);
- respostas a lápis do tipo B serão consideradas;
- o uso de celular ou outro equipamento de comunicação não é permitido;
- é permitido o uso de calculadora. Não é permitido o empréstimo de materiais;
- constam neste caderno de provas uma folha de informações e uma Tabela Periódica.

Corrigir	
Não Corrigir	•

A1. Usando os valores de pKa dos ácidos, coloque as seguintes espécies em ordem decrescente de basicidade:

CH₃NH CH₃ I HO

ACIDOS	pKa
HI	-10
CH4	50
CH3NH2	36
H2O	16

Explique as diferenças de basicidade com base na estrutura de cada espécie

	Corrigir	
П	Não Corrigir	

A2. A molécula abaixo é estruturalmente semelhante ao Cloranfenicol, um potente antibiótico que é usado principalmente para febre tifóide. Com base na estrutura do mesmo, responda:

- a) Qual a configuração de cada estereocentro;
- b) Desenhe um estereoisômero para o composto abaixo;
- c) Coloque a estrutura abaixo na projeção de Fischer.

$\overline{}$	\sim			
11	Co	rrı	91r	۰
	-		D**	

□ Não Corrigir

A3. Qual alceno você escolheria para sintetizar o 2-bromo- 2- metilhexano? Mostre o mecanismo da reação envolvida na síntese.

?
$$\begin{array}{c} \begin{array}{c} \text{HBr} & \text{CH}_3 \\ \hline \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \\ \\ \text{Br} \end{array}$$

Corrigir
Não Corrigir

B1. O Processo de precipitação de Manganês consiste em saturar com o gás sulfídrico (H_2S) uma solução, e a reação gera a formação de $MnS_{(s)}$ como indicado nas reações abaixo.

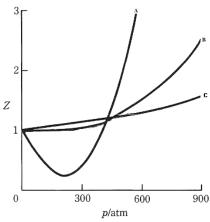
$$\begin{split} &Mn^{2+}{}_{(aq)} + S^{2-}{}_{(aq)} \leftrightarrows MnS_{(s)} \\ &H_2S_{(g)} \xrightarrow{} H_2S_{(aq)} \\ &H_2S_{(aq)} + H_2O_{(l)} \leftrightarrows H_3O^{+}{}_{(aq)} + HS^{-}{}_{(aq)} \\ &HS^{-}{}_{(aq)} + H_2O_{(l)} \leftrightarrows H_3O^{+}{}_{(aq)} + S^{2-}{}_{(l)} \\ &2H_2O_{(l)} \leftrightarrows H_3O^{+}{}_{(aq)} + OH^{-}{}_{(aq)} \end{split}$$

O que acontece com o MnS quando:

- a. O sistema é aquecido? Justifique sua resposta.
- b. O pH é aumentado para pH=14? Justifique a sua resposta
- c. Após o Aumento do item b, o pH é diminuído para zero.
- d. O sistema não atinja a condição de saturação de H₂S?

☐ Corrigir	Nº. de Inscrição
□ Não Corrigir	

B2. O SO_3 gasoso é produzido pela combustão de combustíveis contendo enxofre. O Contato dessa substância com a água na atmosfera gera chuva ácida. Sabendo disso responda: Qual a reação que representa a formação da chuva ácida? Qual o pH de uma gota de água que adsorveu 0,00118 mL de SO_3 na CNTP? Considere K_{HSO4} = $1,71x10^{-3}$ e o volume de uma gota de água como 0,05 mL.


☐ Corrigir	Nº. de Inscrição
☐ Não Corrigir	

B3. Uma análise Volumétrica, é uma técnica da química analítica quantitativa, que determina a quantidade de matéria de uma determinada amostra, através da capacidade de reação entre 2 reagentes. O Perfil de uma análise volumétrica pode ser traçado na forma de um gráfico de pH x Volume de solução adicionado. Através deste perfil é possível determinar o ponto de equivalência de uma dada reação química, e os indicadores mais adequados para tal determinação. Suponha uma volumetria entre 100,00 mL de uma solução de Ácido Acético (CH₃COOH) de concentração 0,100 mol L⁻¹, com NaOH 0,100 mol L⁻¹. Calcule o pH da solução quando é adicionado: (considere Ka_{ac,acetico} = 1,8 x 10⁻⁵)

- a. Qual o pH da solução quando se adiciona 10 mL de NaOH?
- b. Qual o pH no ponto de equivalência?
- c. Qual o volume de NaOH que é adicionado para se obter a capacidade tamponante máxima?

Corrigir	
Não Corrigir	

C1. O fator de compressibilidade, Z, de um gás é a razão entre o volume molar do gás real, V_m , e o volume molar de um gás perfeito, V_m° , nas mesmas pressão e temperatura. A dependência das interações intermoleculares com a distância entre as moléculas (ou entre átomos, no caso de gases monoatômicos) pode ser investigada através de um gráfico de Z em função da pressão, p. Abaixo, a variação do fator de compressibilidade em função da pressão é mostrada para três gases reais, a uma temperatura de 0 °C.



Com base nas informações e no gráfico acima, responda:

- a) Em qual das isotermas ilustradas no gráfico o volume molar do gás real coincide menos com o volume molar de um gás perfeito? Justifique, determinando o valor de $(\partial Z/\partial p)_T$ para um gás perfeito.
- b) Descreva matematicamente e interprete a dependência da energia interna com a distância entre as moléculas (ou entre átomos, no caso de gases monoatômicos) de um gás perfeito, relacionando-a com o valor de $(\partial Z/\partial p)_T$ encontrado no item anterior.
- c) Duas das três isotermas correspondem aos gases He e C₂H₆. Atribua estas isotermas aos gases correspondentes justificando sua atribuição com base na predominância de forças atrativas ou repulsivas.

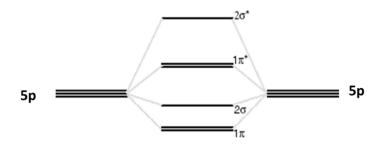
Corrigi	r
Não Co	orrigir

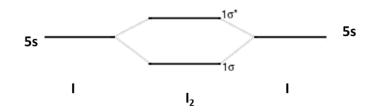
C2. A figura abaixo é um termograma de DSC (<u>Differential Scanning Calorimetry</u>) de uma amostra sólida de uma molécula conhecida como DEC, onde, com aquecimento, duas transições de fases reversíveis são observadas antes da fusão (denunciadas pelos picos). Esta técnica permite determinar a quantidade de calor, correspondente à área integrada dos picos, envolvida em transições de fase à pressão constante, e, neste caso, estes valores encontram-se acima dos picos. Conhecendo o número de conformações acessíveis a cada molécula de DEC, antes e após cada transição, conforme mostrado na figura, e recorrendo à equação de Boltzmann para entropia, calcule:

- a) A variação de entropia molar para a transição de fase correspondendo a passagem de duas para quatro conformações.
- b) A temperatura em que ocorre esta transição.
- c) A variação de energia livre de Gibbs desta transição de fase a uma temperatura de 300 K. Determine também se esta transição é espontânea ou não nesta temperatura.
- $(R = 8,315 \text{ J K}^{-1} \text{ mol}^{-1}; k = R / N_A, \text{ onde } k \text{ e } N_A \text{ são as constantes de Boltzmann e de Avogadro, respectivamente)}$

□ Corrigir	Nº. de Inscrição
☐ Não Corrigir	

- C3. A variação de energia livre de Gibbs padrão da reação $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ é- 141,74 kJ em 25,00 °C. Calcular:
- a) A constante de equilíbrio em termos de pressões parciais para a reação na temperatura dada.
- b) A variação de energia livre de Gibbs da reação e a direção espontânea da reação quando as pressões parciais dos componentes forem $P_{SO2(g)} = P_{O2(g)} = 200$ bar; $P_{SO3(g)} = 0$ bar.
- c) A variação de energia livre de Gibbs da reação e a direção espontânea da reação quando as pressões parciais dos componentes forem $P_{SO2(g)} = 0$ bar; $P_{O2(g)} = P_{SO3(g)} = 200$ bar.
- d) A variação de energia livre de Gibbs da reação e a direção espontânea da reação quando as pressões parciais dos componentes forem $P_{SO2(g)} = P_{O2(g)} = P_{SO3(g)} = 200$ bar. $(R = 8,315 \text{ J K}^{-1} \text{ mol}^{-1})$


Corrigir
Não Corrigir


D1. Nas refinarias de petróleo, o processo Claus é utilizado para recuperação de enxofre do sulfeto de hidrogênio encontrado no gás natural e nos subprodutos derivados do óleo cru refinado. As etapas do processo são:

- 1ª. Etapa- oxidação do sulfeto de hidrogênio para produzir dióxido de enxofre
- 2ª. Etapa-reação de comproporcionamento entre dióxido de enxofre e sulfeto de hidrogênio.
- a) Escreva a equações químicas balanceadas das reações que ocorrem em cada uma das etapas do processo Claus.
- b) Considerando o diagrama de Latimer para espécies de enxofre em meio ácido padrão, demonstre que a reação de comproporcionamento citada é espontânea.

□ Não Corrigir

D2. Um esquema qualitativo do diagrama de energia dos orbitais moleculares de valência para molécula de Iodo (I_2) é apresentado, a seguir.

- a) Preencha adequadamente os orbitais moleculares de valência para a molécula de I_2 e identifique os orbitais de fronteira HOMO e LUMO.
- b) Em meio aquoso, o iodo (I_2) reage com iodeto (I) para formar a espécie I_3 . Descreva a formação da espécie I_3 em termos da teoria de orbitais moleculares.

□ Corrigir	Nº. de Inscrição
□ Não Corrigir	

D3.Embora os elementos boro e alumínio sejam ambos do grupo 13 da tabela periódica, as características estruturais e os comportamentos químicos são distintos.

- a) Escreva as estruturas de Lewis do cloreto de boro (BCl₃) e do cloreto de aluminio (Al₂Cl₆) anidros e explique porque o primeiro é monomérico e o segundo dimérico.
- b) O Al(OH)₃ é um hidróxido anfótero e se dissolve em meio aquoso muito ácido ou muito básico. Faça uma representação tridimensional das espécies complexas solúveis presentes nos meios ácido e básico. .

□ Corrigir	Nº. de Inscrição
□ Não Corrigir	

□ Corrigir	Nº. de Inscrição
□ Não Corrigir	

□ Corrigir	Nº. de Inscrição
□ Não Corrigir	

TABELA PERIÓDICA

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1																	2 He
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
7	9											11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
23	24											27	28	31	32	35,5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	40	45	48	51	52	55	56	59	58,7	63,5	65	70	72,6	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85,5	87,6	89	91	93	96	(99)	101	103	106,4	108	112	115	119	122	128	127	131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
133	137		178,5	181	184	186	190	192	195	197	200,6	204	207	209	(210)	(210)	(222)
87	88	89-103	104	105	106	107	108	109									
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)		(260)	(262)	(263)	(262)	(265)	(266)									

Número Atômico

Símbolo

Massa Atômica

Série dos lantanídeos

Ī	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	139	140	141	144	(147)	150	152	157	159	162,5	165	167	169	173	175

Série dos actinídeos

89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
(227)	232	(231)	238	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(253)	(256)	(253)	(257)