DISCIPLINA: EMC0122 - Lab. de Circuitos Lógicos

UNIDADE ACADÊMICA: Escola de Engenharia Elétrica Mecânica e Computação

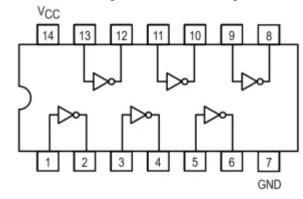
CURSO: Engenharia de Computação

EXPERIÊNCIA 1 - PORTAS LÓGICAS

1. OBJETIVO

- Verificar experimentalmente o funcionamento das portas: NOT (INVERSOR), OR, AND e NAND.
- Verificar experimentalmente a universalidade da porta NAND.
- Verificar experimentalmente alguns teoremas de álgebra booleana.

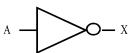
2. MATERIAL


CIs: 74LS04; 74LS32; 74LS08; 74LS00 **EQUIPAMENTO -** kit – Eletrônica Digital

3. PORTA NOT ou INVERSORA - 74LS04

Passo 1

Verifique a pinagem do 74LS04 e faça as seguintes ligações:


- o pino V_{CC} do CI ligue no terminal + 5V do kit.
- o pino **GND** do CI ligue no terminal GND do kit.

Passo 2

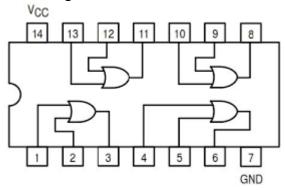
Para uma das portas lógicas do 74LS04, conecte:

 A em uma das entradas das chaves geradoras de níveis lógicos.

 X em uma das entradas do Leds indicadores de estado lógico.

Para os valores de A, anote na tabela o valor lido de X, onde:

- Led apagado equivale nível lógico BAIXO ou 0;
- Led aceso equivale nível lógico ALTO ou 1.


Tab.	1	
A	0	1
\mathbf{X}		

4. **PORTA OR - 74LS32**

Passo 1

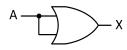
Verifique a pinagem do 74LS32 (OR) e faça as ligações:

- o pino V_{CC} do CI ligue no terminal + 5V do kit.
- o pino **GND** do CI ligue no terminal GND do kit.

Passo 2

Para uma das portas lógicas, conecte:

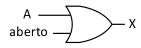
- suas entradas em duas chaves geradoras de níveis A lógico;
 B -
- sua sua saída em um dos Leds indicadores de estado lógico.


Passo 3

Para os valores de A e B, anote na tabela o valor lido de X.

Tab. 2

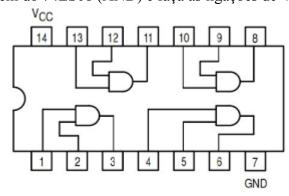
Iuc.				
A	0	0	1	1
В	0	1	0	1
X				


Faça as ligações de uma porta OR de duas entradas conforme mostra a figura ao lado. Determine as saídas para cada entrada indicada na tabela.

,	Tab.	3	
	A	0	
	X		

Passo 5

Use um porta OR de duas entradas conforme mostra a figura ao lado. Determine as saídas para cada entrada indicada na tabela.


Tab. 4				
A	0	1		
X				

OBS: Uma entrada em aberto (flutuante) significa que não está ligada em lugar algum. No documento *Características Básicas dos CIs Digitais* você encontra as informações sobre o comportamento de entradas abertas nos dispositivos que estamos usando.

5. **PORTA AND - 74LS08**

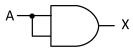
Passo 1

Verifique a pinagem do 74LS08 (AND) e faça as ligações de Vcc e GND.

Passo 2

Para uma das portas lógicas, conecte:

- suas entradas em duas chaves geradoras de níveis lógico;
- sua sua saída em um dos Leds indicadores de estado lógico.

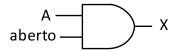

Para os valores de A e B, anote na tabela o valor lido de X.

Tab. 5

140.5					
A	0	0	1	1	
В	0	1	0	1	
X					

Passo 4

Faça as ligações de uma porta AND de duas entradas conforme mostra a figura ao lado. Determine as saídas para cada entrada indicada na tabela.

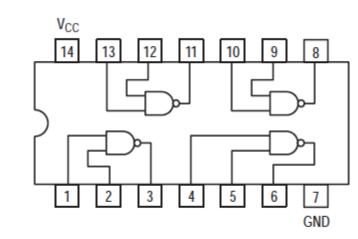


Tab.	6

A	0	1
X		

Passo 5

Use um porta AND de duas entradas conforme mostra a figura ao lado. Determine as saídas para cada entrada indicada na tabela.


_	-	_
l'~	I_	
13	n	- 1
ıч	υ.	•

A	0	1
X		

6. UNIVERSALIDADE DA PORTA NAND – 74LS00

Passo 1

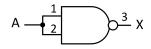
Verifique a pinagem do 74LS00 (NAND) e faça as ligações de Vcc e GND.

Para uma das portas lógicas, conecte:

 suas entradas em duas chaves geradoras de níveis A lógico;

• sua sua saída em um dos Leds indicadores de estado lógico.

Passo 3

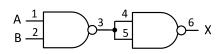

Para os valores de A e B, anote na tabela o valor lido de X.

Tab. 8

A	0	0	1	1
В	0	1	0	1
X				

Passo 4

Conecte as duas entradas em um ponto comum da porta NAND. Verifique seu funcionamento. Qual operação lógica A está sendo realizada?

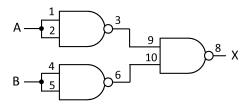


Tab. 9

140.)				
A	0	1		
X				

Passo 5

Faça as conexões de duas portas NAND, como a figura ao lado. Verifique seu funcionamento. Qual operação lógica está sendo realizada?



Tab. 10

A	0	0	1	1
В	0	1	0	1
X				

Passo 6

Faça as conexões de três portas NAND, como a figura ao lado. Verifique seu funcionamento. Qual operação lógica está sendo realizada?

Tab. 11

100.11				
A	0	0	1	1
В	0	1	0	1
X				

7.	OUESTÕES (Considere dis	spositivos da	família 74.	nas suas respo	stas)
<i>,</i> •	QUEST OLS (Constact c and	positivos aa	141111114 / 19	mas suus respo	siusj

7.1.	Mostre como conectar duas portas OR de duas entradas para obter o equivalente de uma porta OR de três entradas.
7.2.	Faça a tabela verdade de uma porta OR de três entradas, se uma das entradas estiver aberta.
7.3.	Mostre como conectar duas portas AND de duas entradas para obter o equivalente de uma porta AND de três entradas.
7.4.	Faça a tabela verdade de uma porta AND de três entradas, se uma das entradas estiver aberta.
7.5.	Desenhe o circuito lógico da expressão $X = AC + BD$ usando portas AND (de duas entradas), OR (de duas entradas). Informe quantos CIs seriam necessários para a implementação.

7 .6.	Desenhe o circuito lógico da expressão $X = AC + BD$ usando apenas portas NAND de duas entradas. Simplifique ao ao máximo a solução e informe quantos CIs seriam necessários para a implementação.
7.7.	Nas seções 4 (portas OR) e 5 (portas AND) deste experimento, foram usados arranjos diferentes das portas. Consulte o livro texto e indique quais os teoremas (axiomas) são representados na
	(a) Seção 4, passo 4:
	(b) Seção 4, passo 5:
	(c) Seção 5, passo 4:
	(d) Seção 5, passo 5: