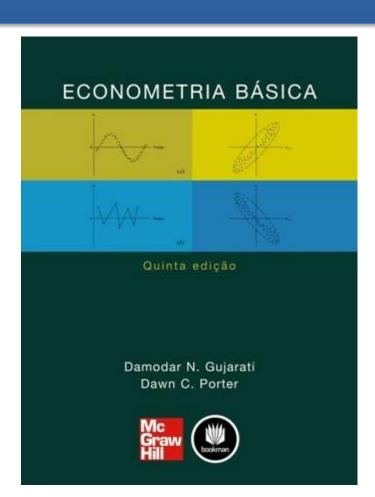
1 - Noções de álgebra matricial

- Apêndice A Revisão de alguns conceitos estatísticos
- Apêndice B Rudimentos de álgebra matricial



	E1	E2
S1	X ₁₁	X ₁₂
S2	X ₂₁	X ₂₂
S3	X ₃₁	X ₃₂

- Seja os resultados obtidos por um pesquisador fazendo um estudo quantitativo de três espécies de organismos em duas estações de coleta. X₁₁ representa o número de indivíduos encontrados da primeira espécie na estação 1 (E1); X₁₂ o n. de indv. da primeira sp. na estação 2....
- O primeiro índice indica o número da linha e o segundo o número da coluna.

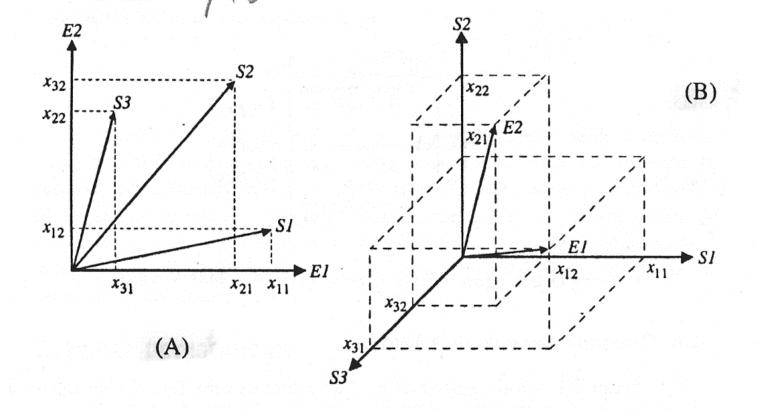
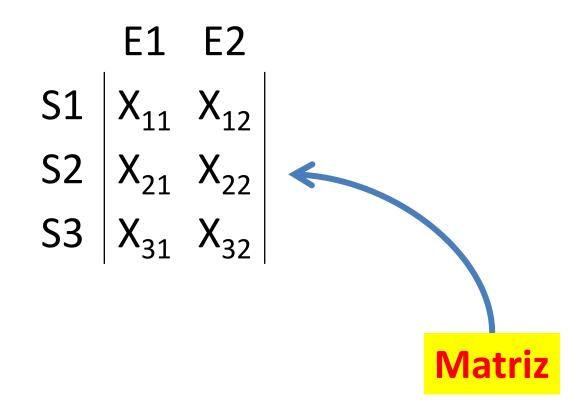
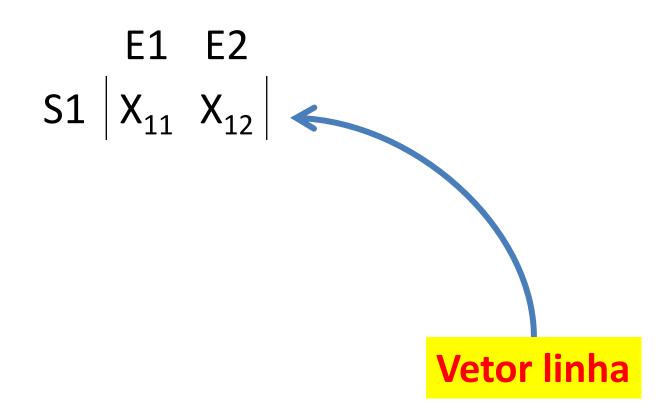
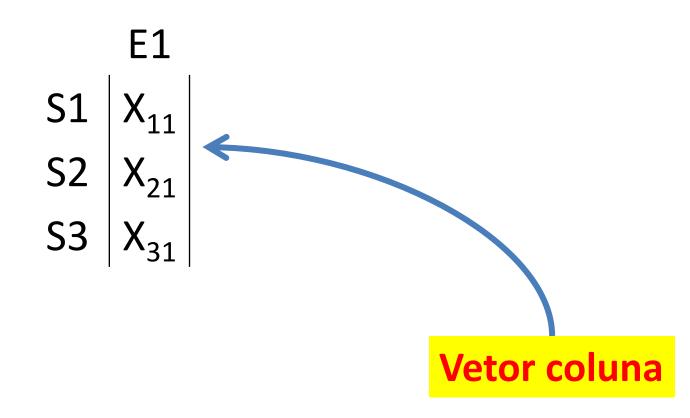


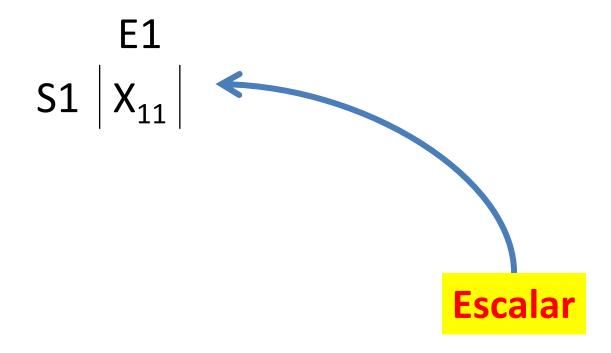
Figura 1 – Representação vetorial das espécies no espaço das estações (A) e das estações no espaço das espécies (B).

- Em cada ponto, no espaço bi ou tridimensional, associa-se um vetor.
- Vetores-espécie: S1, S2 e S3 abundância das espécies em duas estações;
- Vetores-estação: E1 e E2 abundâncias de três espécies.









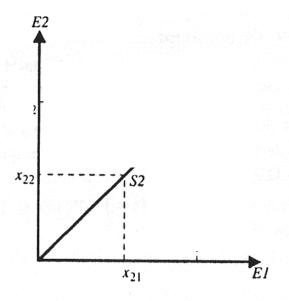
Matriz – Vetor – Escalar

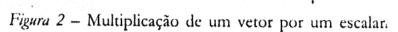
	E1	E2
S1	X ₁₁	X ₁₂
S2	X ₂₁	X ₂₂
S3	X ₃₁	X ₃₂

Operações com Vetores

Multiplicação de um vetor por um escalar

- $S2_{x21,x22}$ multiplicado por 3 = $S2'_{3x21,3x22}$
- Representa a multiplicação dos elementos pelo escalar.





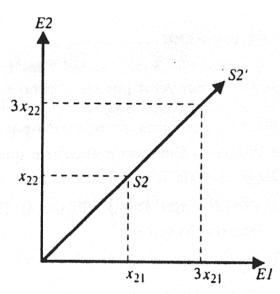


Figura 2 - Multiplicação de um vetor por um escalar.

Adição de dois vetores

Ao adicionar as abundâncias de duas espécies S1 e S2, representadas pelos vetores $S1_{x11,x12}$ e $S2_{x21,x22}$. O resultado será vetor $S3_{(x11+x21,x12+x22)}$

•
$$S1 = [x11 \ x12]$$

•
$$S2 = [x21 x22]$$

•
$$S3 = [x11 + x21 \quad x12 + x22]$$

Adição de dois vetores

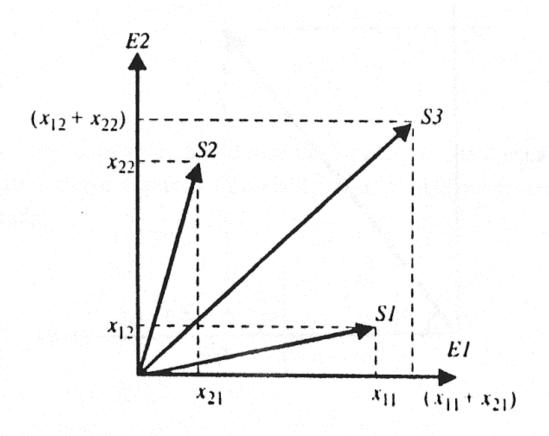


Figura 3 - Adição de dois vetores.

Produto escalar de dois Vetores

Sejam duas espécies representadas pelos vetores: $S1_{x_{11},x_{12}}$ e $S2_{x_{21},x_{22}}$, o produto escalar é obtido fazendo-se a soma dos produtos dos elementos respectivos

$$(x_{11}, x_{21} + x_{12}, x_{22})$$

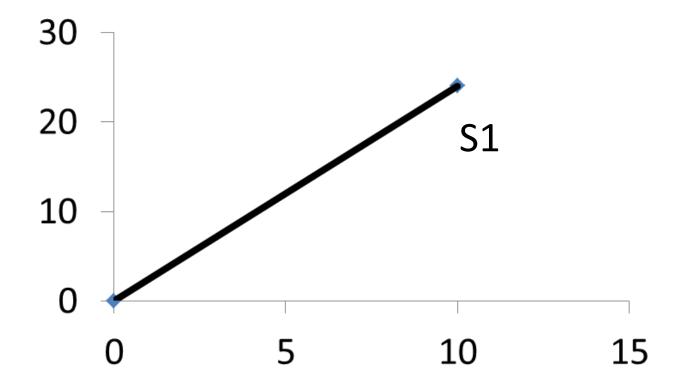
É o produto dos escalares

Exemplo – produto escalar

$$(x_{11}x_{21} + x_{12}x_{22})$$

Comprimento de um Vetor

 O produto escalar de um vetor por ele mesmo corresponde ao seu comprimento: Norma.



Norma

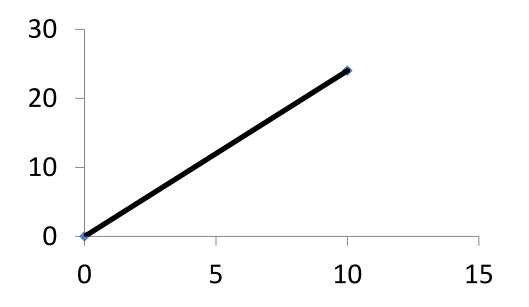
$$||S1|| = \sqrt{x^2_{11} + x^2_{12}}$$

PITÁGORAS

Comprimento de um Vetor

Qual a norma deste vetor?

$$X_{11} = 10$$
; $x_{12} = 24$
 $S1 = [10 24]$

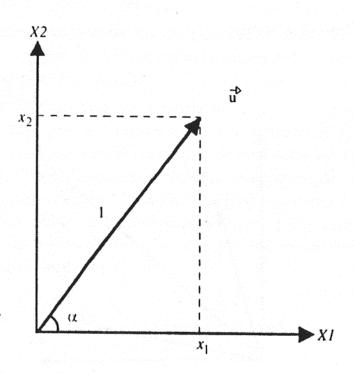


$$||S1|| = \sqrt{10^2 + 24^2}$$

Vetores com Norma 1

 Quando o comprimento do vetor é igual a 1, diz-se que ele tem norma 1.

Norma = 1



$$||S1|| = \sqrt{x_1^2 + x_2^2} = 1$$

Figura 4 - Vetor U de norma 1.

Normalização de um Vetor

 A representação vetorial simultânea de diversas variáveis exige que todos os vetores representativos dessas variáveis tenham norma 1: normalização.

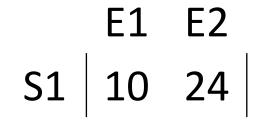
Normalização de um Vetor

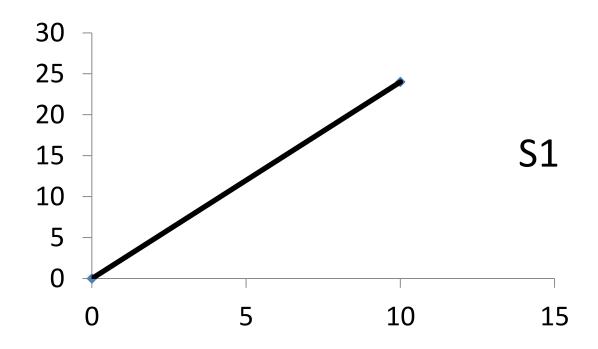
 Divide-se cada elemento do vetor por sua norma.

$$\vec{U} = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{\sqrt{1^2 + 4^2 + 8^2}} \\ \frac{4}{\sqrt{1^2 + 4^2 + 8^2}} \\ \frac{8}{\sqrt{1^2 + 4^2 + 8^2}} \end{bmatrix} = \begin{bmatrix} 0,111 \\ 0,444 \\ 0,888 \end{bmatrix}$$

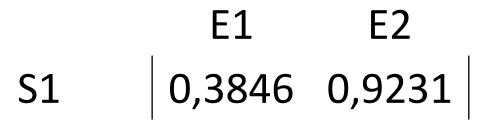
O vetor U tem agora norma 1, pois $0.111^2 + 0.444^2 + 0.888^2 = 1$

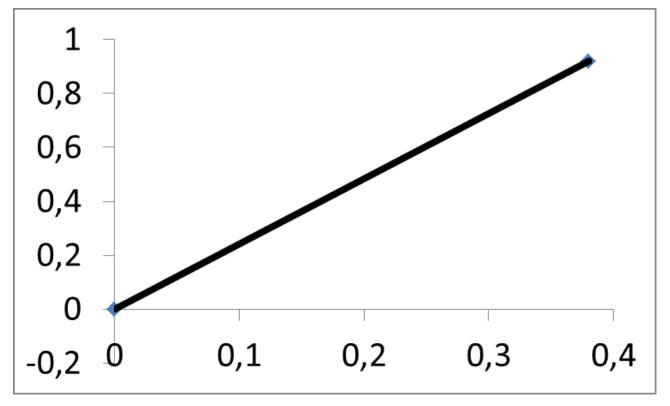
Exercício: normalizar este vetor!





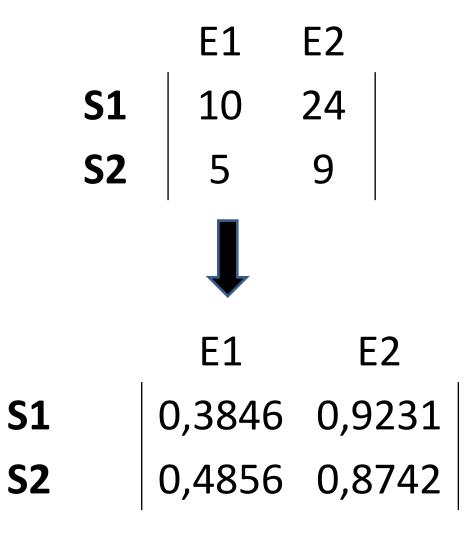
Vetor normalizado!





Exercício: Normalizar <u>os vetores – S1 e S2</u>

Vetores normalizados!!



Ortogonalidade de dois Vetores

- Sejam dois vetores-espécie S1 e S2 diferentes de zero, fazendo um ângulo α entre eles.
- Existe a seguinte relação:

$$\cos \propto = \frac{S1.S2}{\|S1\|.\|S2\|}$$

- O cosseno do ângulo entre dois vetores é igual à razão entre o produto escalar e o produto das suas normas
- Essa relação oferece uma importante aplicação estatística:

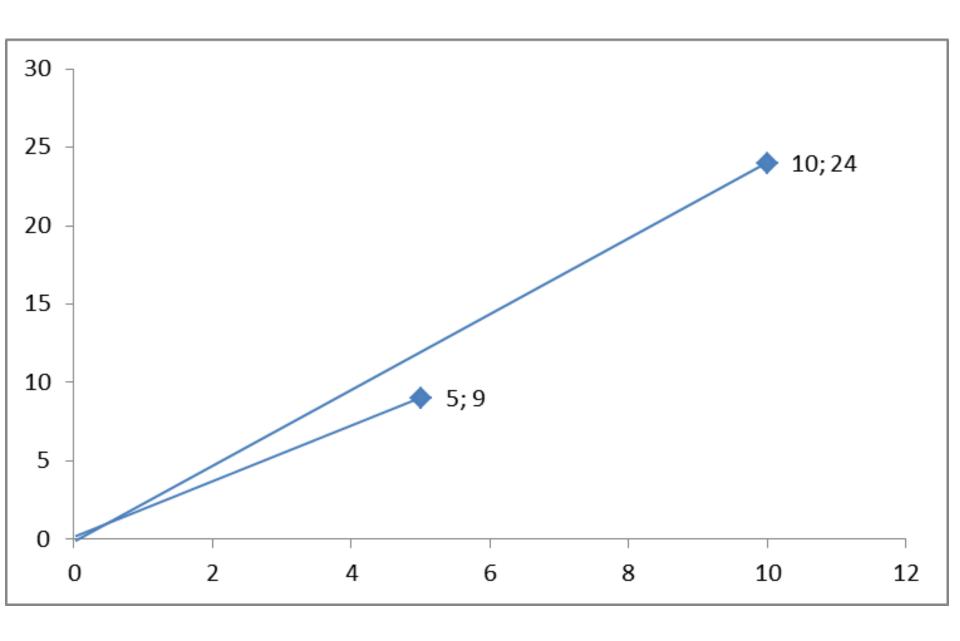
Ortogonalidade de dois Vetores

$$\cos \propto = \frac{S1.S2}{\|S1\|.\|S2\|}$$

Ortogonalidade de dois Vetores

$$\cos \propto = \frac{S1.S2}{\|S1\|.\|S2\|}$$

$$\cos \propto = 0.9937$$
; $\alpha = 6.43^{\circ}$



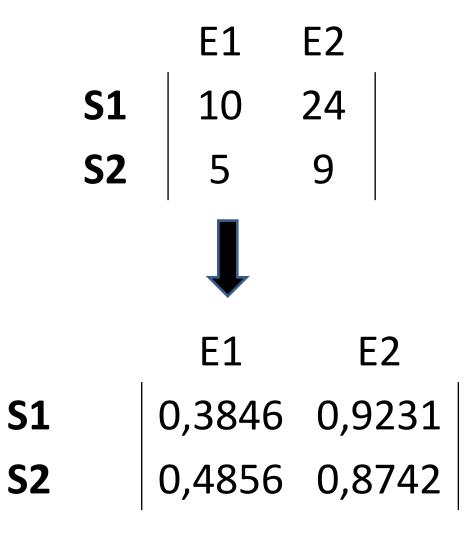
Vetores com norma 1

No caso de vetores com norma 1, a equação se simplifica:

$$\cos \propto = S1.S2$$

$$\cos \propto = \frac{S1.S2}{\|S1\|.\|S2\|}$$

Vetores normalizados!!



Ortogonalidade de dois Vetores normalizados

$$\cos \propto = \frac{S1.S2}{\|S1\|.\|S2\|}$$

S1.S2 = (0,3846.0,4856)+(0,9231.0,8742)

S1.S2 = 0,9937 |
$$\cos \propto = 0,9937$$
; $\alpha = 6,43^{\circ}$

Centralização de dados

 Sejam as duas espécies S1 e S2 nas duas estações de coleta/parcelas

Pergunta: O que significa centralização de dados?

Resposta: Significa subtrair de cada elemento do vetor, a

média dos elementos deste vetor.

O que isso significa?

É a distância entre cada elemento e a média, i.é. o desvio em relação à média.

Exemplo de centralização

• Centralização: Ex. $X_{11} - \overline{m_1}$

Precisamos das médias de S1 e S2: $\overline{m_1}$ e $\overline{m_2}$

Exemplo de centralização

• Centralização: Ex. $X_{11} - \overline{m_1}$

Médias:
$$\overline{m_1} = 17$$
 $\overline{m_2} = 7$

Exemplo

Centralização:

$$E1$$
 $E2$
 $S1$ $10-17$ $24-17$
 $S2$ $5-7$ $9-7$

Vetor centralizado ou centrado

$$E1$$
 $E2$ $S1$ -7 7 $S2$ -2 2

Dados centralizados: aplicação

- Sejam duas espécies S1 e S2, contadas em n amostras, e de médias m1 e m2.
- Suponha-se os valores efetivos de cada amostra centrados. Cada espécie terá a seguinte representação vetorial:

S1 =
$$(x_{11} - m1, x_{12} - m1)$$

S2 = $(x_{21} - m2, x_{22} - m2)$

Cálculo da norma de cada vetor centralizado

$$||S1|| = \sqrt{(x_{11} - m1)^2 + (x_{12} - m1)^2}$$

$$||S2|| = \sqrt{(x_{21} - m2)^2 + (x_{22} - m2)^2}$$

Cálculo da norma de cada vetor centralizado

$$||S1|| = \sqrt{(x_{11} - m1)^2 + (x_{12} - m1)^2} = \sqrt{SQD1}$$

$$||S2|| = \sqrt{(x_{21} - m2)^2 + (x_{22} - m2)^2} = \sqrt{SQD2}$$

Para dados centrados, a norma de um vetor expressa a **Soma dos Quadrados dos Desvios (SQD)**; i.e. a dispersão dos dados em relação à média.

Produto escalar de dois vetores centralizados

$$[(x_{11}-m1).(x_{21}-m2)]+[(x_{12}-m1).(x_{22}-m2)]$$

$$= \sum_{i=1}^{n} (x_{1i} - m1).(x_{2i} - m2) = SPD_{1,2}$$

O produto escalar de dois vetores centralizados é igual à **Soma dos Produtos dos Desvios (SPD)**.

Ortogonalidade de dois Vetores centralizados

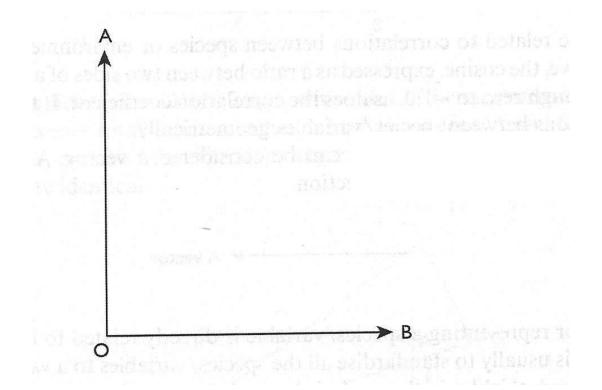
$$\cos \propto = \frac{SPD_{1,2}}{\sqrt{SQD_1.SQD_2}}$$

$$\cos \alpha = \frac{\sum (x - \bar{x}).(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2.\sum (y - \bar{y})^2}}$$

Coeficiente de correlação linear de Pearson (r)

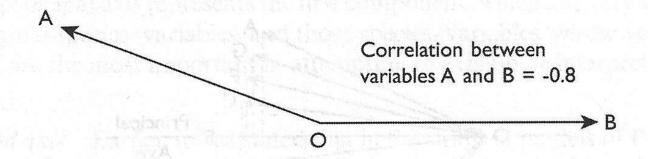
$$r = \frac{\sum (x - \bar{x}).(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2.\sum (y - \bar{y})^2}}$$

$$\cos \alpha = \frac{\sum (x - \bar{x}).(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2.\sum (y - \bar{y})^2}}$$



- 1. Qual o ângulo entre A e B?
- R. 90°?
- 2. Qual o cosseno de 90°?

O → AB Correlation between variables A and B = 1.0



Estudo Dirigido I

- 1. Defina Matriz e apresente as matrizes:
 - a) Quadrada
 - b) Diagonal
 - c) Escalar
 - d) Identidade
 - e) Simétrica
 - f) Nula
 - g) Transposta

Estudo Dirigido I

- Defina as quatro principais categorias escalares em que as variáveis podem ser enquadradas:
 - a) Escala de razão
 - b) Escala de intervalo
 - c) Escala ordinal
 - d) Escala nominal

Estudo Dirigido I

- 3. Quais são as propriedades da distribuição normal?
- 4. O que é uma variável normal padronizada?
- 5. Com se lê a seguinte notação? O que significa? $X \sim N(0,1)$
- 6. Suponha que $X \sim N(8,4)$. Qual a probabilidade de que X assumirá um valor entre $X_1 = 4$ e $X_2 = 12$?
- 7. Apresente o Teorema Central do Limite

1.1 - Dados multidimensionais

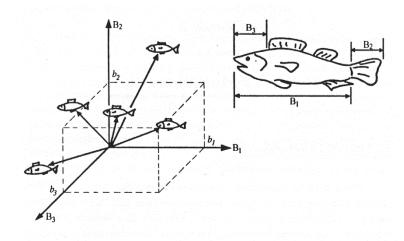


Figura 6 - Representação vetorial de uma variável multidimensional.

Cada peixe posiciona-se no espaço a três dimensões, de acordo

com seus valores em B1, B2 e B3.

Tabela 2. Exemplo de uma Variável com Três Dimensões

Biometrias Peixes	B1	B2	В3
X1	×11	× ₁₂	x ₁₃
X2	×21	×22	x ₂₃
X3	×31	x ₃₂	x ₃₃
X4	×41	×42	x ₄₃
X5	× ₅₁	×52	x ₅₃

Amostras versus variáveis

2 - Os dados multidimensionais

- Análises multivariadas
 - Agrupamento e ordenação: distribuição dos pontos-objetos no espaço de m descritores.
- Utiliza-se cálculo matricial: matriz com os coeficientes de semelhança
- Entre as amostras
 - Análise em modo Q
- Entre descritores
 - Análise em modo R

Os diversos tipos de dados

Quantitativos

- Variável aleatória discreta: contagem
- Variável aleatória contínua: medidas de variáveis químicas e físicas

Semiquantitativos

- Dados oriundos de variáveis quantitativas codificadas através de valores inteiros crescentes.
- E útil quando, por motivo metodológico, há impossibilidade de medir com precisão a variável quantitativa.

Exemplos de Dados Semiquantitativos

Exemplo 1: número de células de fitoplâncton

Células/ml	Códigos
0-10	→ 1
11-100	\rightarrow 2
101-1000	\rightarrow 3
1001-10000	\rightarrow 4

Exemplo 2: recobrimento do substrato por vegetação, estimado visualmente

Recobrimento (%)	Códigos
< 10 -	→ 1
10-25	→ 2
26-50 -	→ 3
51-75	→ 4
76-100	→ 5

Exemplo 3:1 batimento das ondas no litoral marinho (1) of a roquir rapity and reason a superiruse mesh substance I a diade to the

Modo	.a()[17]	ro messa Códigos - se
Calmo	\rightarrow	1
Agitado	\rightarrow	209A 234 8047 803
Batido	\rightarrow	3

Dados Qualitativos

- Qualitativos
 - Para cada objeto só há uma alternativa:
 - sim/não; tudo/nada; 1/0.
 - Presença ou ausência de uma espécie na amostra:
 - 1 presença; 0 ausência

Exemplo – Dados Qualitativos

Definir tipos de substrato em estações de coleta

	Tipos de substratos			
Estações	Calcário	Cascalho	Areia	Lama
A	0	1	0	0
В	0	0	1	0
C	1	0	0	0
D	0	0	0	1
Е	0	and 1 h one	0	0

Transformação de dados

- Motivos para a transformação ou codificação de dados originais:
 - Ajustar os dados a uma distribuição normal
 - Homogeneizar variâncias
 - Eliminar o efeito de diferentes unidades de medida
 - Diminuir o efeito de valores discrepantes
 - Equilibrar a importância relativa de espécies comuns e raras
- É essencial saber sobre as consequências de uma determinada transformação antes de prosseguir com a análise.

Transformação em códigos binários

A codificação em dados binários pode ser útil quando deseja-se, por exemplo, analisar uma tabela que contenha dados quantitativos e qualitativos

Dado original

$$y_{ij} = x_{ij}^{0}$$

Dado transformado

Exemplo

- Estudando a ecologia da alga macroscópica *Pterocladia* foram consideradas as seguintes variáveis:
 - Quatro estações de coleta
 - Porcentagem de recobrimento de Pterocladia
 - Ocorrência de uma alga parasita: Gelidiocolax
 - Hidrodinamismo
 - Temperatura média da água

Exemplo – dados originais

Tabela 4. Dados Brutos de um Exemplo de Estudo Ecológico

Estações	(1)	(2)	(3)	(4)
Pterocladia (%)	25 got unt	60	75	10
Gelidiocolax	". Ausente	Presente	Presente	Ausente
Hidrodinamismo	Fraco	Médio	Forte	Fraco
Temperatura (°C)	c=21,0	17,5	15,0	24,0

Exemplo – dados transformados

Estações				
Pterocladia (<50%)				10 0 pm 1010 100 pm 1
Pterocladia (>50%)	0	1	1	0
Gelidiocolax presente	0	1	1	0
Gelidiocolax ausente	1	0	0	1
Hidrodinamismo fraco	1	0	0	1
Hidrodinamismo médio	0	1	0	0
Hidrodinamismo forte	0	0	1	0
Temperatura < 18°C	0	1	1	0
Temperatura > 18°C	1	0	0	1

Padronização de Dados Quantitativos

- A análise comparativa de descritores quantitativos exige que eles sejam expressos na mesma escala de valores:
 - Temperatura: °C
 - Teores em nitrato: μmol
 - Clorofila: μg.L⁻¹
 - Densidade de Fluxo de Fótons: μmol.m².s⁻¹
 - DAP: cm
 - DAC: mm
 - Altura: m
 - Volume: m³

— ...

Como padronizar?

1º passo: centralizar

- Consiste em subtrair a média $\bar{x_i}$ da variável i de cada valor x_{ii} .
- O resultado é uma variável com média zero.

$$y_{ij} = x_{ij} - \overline{x_i}$$

2º passo: reduzir

• Além de retirar a média (centrar), divide-se cada valor pelo desvio-padrão da variável.

$$y_{ij} = (x_{ij} - \overline{x_i})/s_{x_i}$$

Variável normal padronizada

$$Z = \frac{x - \mu}{\sigma}$$

1. Quais são as propriedades de uma distribuição normal padrão?

Normalização de Dados Quantitativos

- Transforma a distribuição de frequências em distribuição normal: simétrica em relação à média.
- Permite reduzir a heterogeneidade de variâncias (heterocedasticidade) – exigido em testes de comparação de médias e ANOVA, p.ex.
- Diminui a assimetria de uma distribuição de frequência, provocada pela ocorrência de alguns valores discrepantes: outliers.
 - Outliers prejudicam a interpretação de análises (ordenação) por serem responsáveis pela maior parte da variância, mascarando a estrutura dos demais dados.

Relativizar

- Consiste em subtrair de cada dado o valor mínimo da variável e dividir pela amplitude de variação dessa variável.
- Os dados passam a variar de entre 0 e 1.

$$y_{ij} = \frac{x_{ij} - x_{min}}{x_{máx} - x_{min}}$$

Transformação logarítmica

$$y_{ij} = \log(x_{ij} + c)$$

- Base logarítmica provoca mudança linear na escala.
- A constante c é somada a valores negativos ou nulos.
- Recomendada para distribuições fortemente assimétricas
 - Ex. grande número de amostras com poucos indivíduos e poucas amostras com muitos indivíduos.
- A presença de numerosos valores zero (ausência de indivíduos na amostra) dificulta e até impossibilita a normalização dos dados.
 - Não há solução satisfatória, mas pode-se aumentar a amostra para tentar aumentar as ocorrências ou eliminar espécies raras.

Transformação logarítmica

Tabela 6. Densidades de Fitoplâncton (Valores brutos e após a transformação logarítmica)

Cel./litro	100.log (cel./litro)
300	248
10500	402
1200000	608
520000	572
1500	318
1500	318

Transformação raiz quadrada

$$y_{ij} = \sqrt{x_{ij}}$$

Menos drástica do que a logarítmica

Exercício

1. Faça a transformação raiz quadrada dos dados da Tabela e compare as diferenças.

Cel/litro	100.Log (cel/litro)	Raiz (cel/litro)
300	248	
10.500	402	
1.200.000	608	
520.000	572	
1.500	318	

Exercício

2. Padronize e calcule a média e a variância.

	Cel/litro	100.Log (cel/litro)	Raiz (cel/litro)
	300	248	
	10.500	402	
	1.200.000	608	
	520.000	572	
	1.500	318	
Média			
Variância			

Dica para decidir sobre uma transformação

• Calcular a equação de regressão entre os desvios-padrão (s_x) e o logaritmo das médias (\bar{x}):

$$s_x = a \cdot \log(\bar{x}) + b + \varepsilon$$

- 1. Se "a" for igual a zero, não há necessidade de transformação;
- 2. Se for igual a 1, recomenda-se: log(x)
- 3. Se for igual a 5, recomenda-se raiz de x

Testes de normalidade

- Distribuição de frequências
 - Plurimodal: nenhuma transformação normalizante é possível – várias populações.
 - Unimodal: verificar assimetria (Skewness) e achatamento (curtose).

Assimetria:
$$\alpha_3 = \frac{\sum (x - \bar{x})^3}{s^3_x (n-1)}$$

Curtose:
$$\alpha_4 = \frac{\sum (x - \bar{x})^4}{s^4_x (n-1)} - 3$$

Assimetria

- Se α_3 = 0, a distribuição é normal;
- Se $\alpha_3 > 0$, assimétrica à direita (positiva);
- Se α_3 < 0, assimétrica à esquerda (negativa)

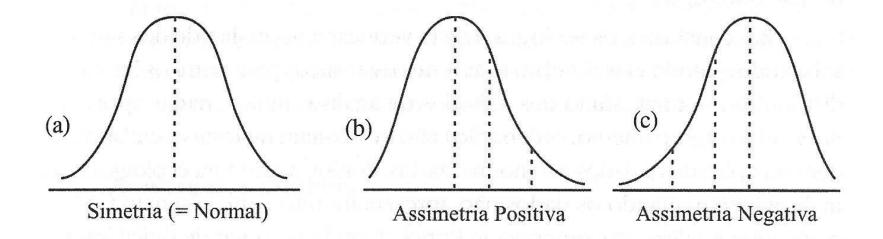


Figura 7 Forma de distribuição de frequência de uma variável, de acordo com seu grau de assimetria.

Curtose

- Se α_4 = 0, a distribuição é normal
 - Mesocúrtica;
- Se $\alpha_4 > 0$, pico relativamente alto
 - Leptocúrtica;
- Se α_4 < 0, achatada
 - Platicúrtica

Curtose

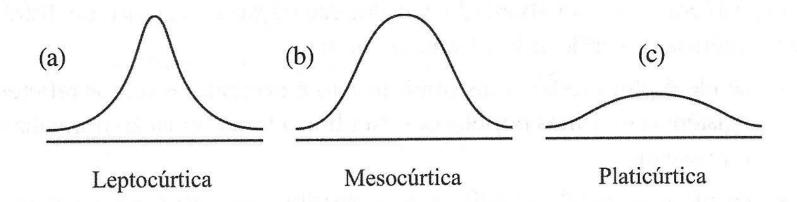


Figura 8 Forma de distribuição de frequência de uma variável, de acordo com a medida de curtose.

Testes para checar a normalidade dos dados

- Kolmogorov-Smirnov
- Shapiro & Wilk

Distribuição Normal

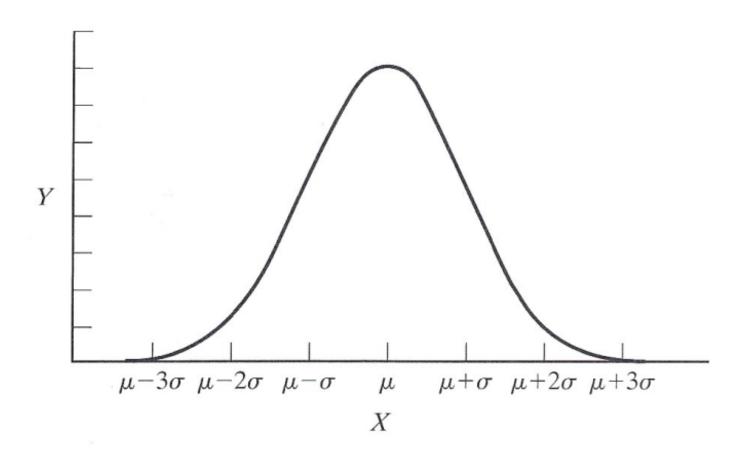


FIGURE 6.1: A normal distribution.

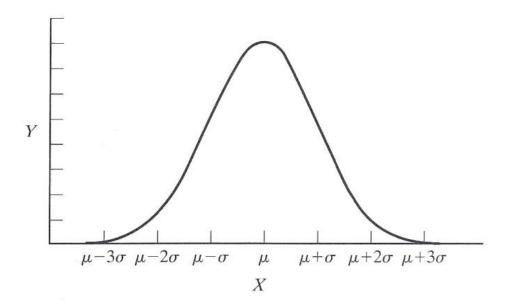


FIGURE 6.1: A normal distribution.

 π (lowercase Greek pi),* which equals 3.14159...; and e (the base of Naperian, or natural, logarithms),† which equals 2.71828.... There are also two parameters (μ and σ^2) in the equation. Thus, for any given standard deviation, σ , there are an infinite number of normal curves possible, depending on μ . Figure 6.2a shows normal curves for $\sigma = 1$ and $\mu = 0, 1$, and 2. Likewise, for any given mean, μ , an infinity of normal curves is possible, each with a different value of σ . Figure 6.2b shows normal curves for $\mu = 0$ and $\sigma = 1, 1.5$, and 2.

A normal curve with $\mu=0$ and $\sigma=1$ is said to be a *standardized normal curve*. Thus, for a standardized normal distribution,

$$Y_i = 1\sqrt{2\pi}e^{-X_i^2/2}. (6.2)$$

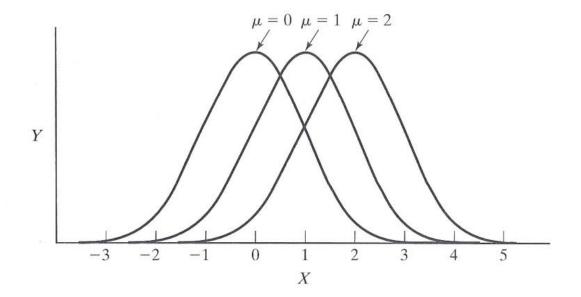


FIGURE 6.2a: Normal distribution with $\sigma = 1$, varying in location with different means (μ).

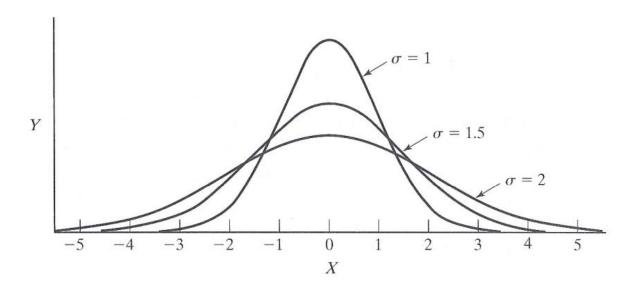


FIGURE 6.2b: Normal distributions with $\mu = 0$, varying in spread with different standard deviations (σ) .

Distribuição Normal

Using the preceding considerations of the table of normal deviates (Table B.2), we can obtain the following information for measurements in a normal population:

The interval of $\mu \pm \sigma$ will contain 68.27% of the measurements.*

The interval of $\mu \pm 2\sigma$ will contain 95.44% of the measurements.

The interval of $\mu \pm 2.5\sigma$ will contain 98.76% of the measurements.

The interval of $\mu \pm 3\sigma$ will contain 99.73% of the measurements.

50% of the measurements lie within $\mu \pm 0.67\sigma$.

95% of the measurements lie within $\mu \pm 1.96\sigma$.

97.5% of the measurements lie within $\mu \pm 2.24\sigma$.

Curiosidade

^{*}The symbol "±" indicates "plus or minus" and was first published by William Oughtred in 1631 (Cajori, 1928: 245).

Homocedasticidade

- Trata da dispersão dos dados em torno da média.
- Homogeneidade dessas dispersões entre amostras de dados que queremos comparar.
 - Se estamos comparando duas médias, avaliamos se a variabilidade dos dados entre elas é similar.

Homocedasticidade - Exemplo

- Os dados usados para o cálculo de uma média 1 têm alta variabilidade
- Os dados usados para o cálculo de uma média
 têm variabilidade reduzida
 - Essas amostras não têm o mesmo perfil de dispersão (variabilidade) dos dados.
 - São <u>hetero</u>cedásticas (heterogêneas).
 - Se as variâncias fossem iguais ou próximas entre si, então seriam <u>homo</u>cedásticas (homogêneas).

Cálculo da Homocedasticidade

 Ao dividir a variância de um grupo (a maior) pela variância de um outro grupo (a menor), a relação entre elas indicará o quanto uma variância é maior do que a outra.

Exemplo:

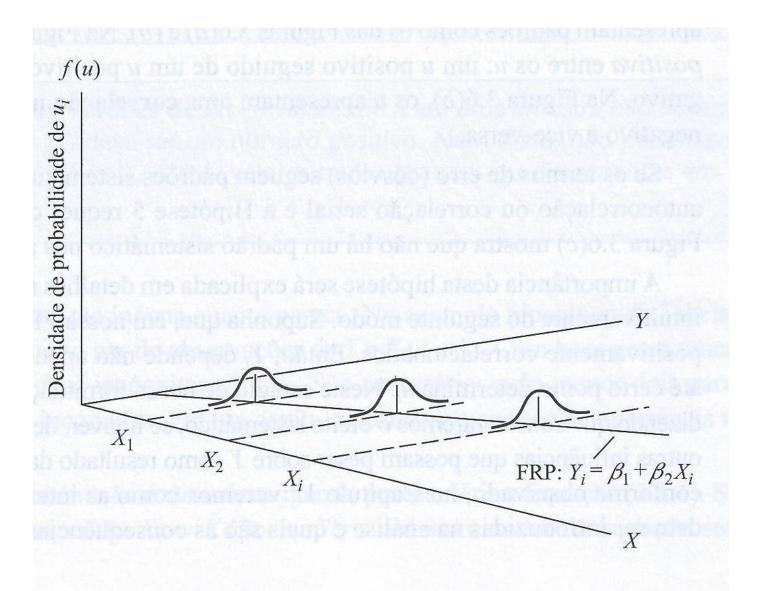
- Amostra 1: DP = 1,5; variância = $(1,5)^2$ = 2,25
- Amostra 2: DP = 2,5; variância = $(2,5)^2$ = 6,25

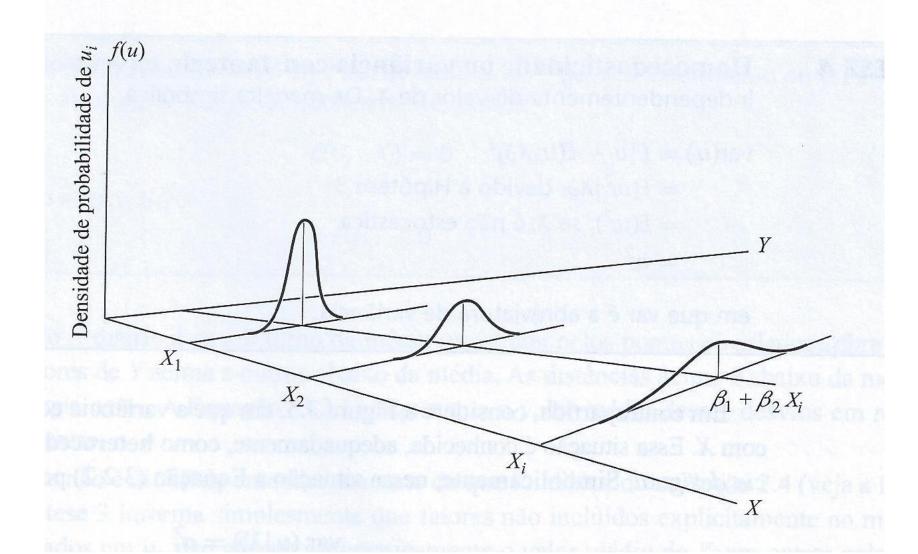
Homocedasticidade = 6,25/2,25 = 2,778.

Cálculo da Homocedasticidade

- Regra prática:
 - Se a relação entre as variâncias for menor do que 4, as amostras são homocedásticas;
 - Se > 4, heterocedásticas.

- Testes apropriados:
 - Teste de Cochran;
 - Teste de Levene





Procedimentos para a realização dos exercícios da disciplina

- Programa PAST (Google)
- Manual do programa PAST
- Planilha no site do ProFloresta

Estudo Dirigido II

- 1. Na planilha de variáveis ambientais selecionar e copiar as variáveis
 - sombra_seca e sombra-chuva
- Fazer análise exploratória dos dados: estatística descritiva
- 3. Testar a normalidade dos dados
- 4. Fazer o histograma
- 5. Testar a homocedasticidade (ANOVA)
- 6. Abrir o manual do programa e checar os princípios do teste de Levene.