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therapy for MDR infections.

Introduction

Antimicrobial resistance (AMR) poses a critical global health
threat that necessitates innovative therapeutic approaches (1, 2).
Bacteriophages (phages), viruses that infect and destroy bacteria,
have emerged as a promising therapeutic solution to combat multi-
drug-resistant (MDR) infections (3, 4).

Phage therapy, a concept that originated in the early 20th centu-
ry (5), was largely abandoned in Western Europe and North Amer-
ica following the introduction of antibiotics in the 1940s, although
its use continued in Eastern Europe (6). However, the growing
AMR crisis has rekindled widespread interest in this therapeutic
modality, with numerous successful cases reported worldwide (7).
Personalized phage therapy, which involves selecting and optimiz-
ing phages for individual cases, is now being refined at several cen-
ters across Europe, the United States, and Australia.

Recent studies have demonstrated the efficacy of phage ther-
apy in treating MDR infections. A recent systematic review of 59
phage therapy studies published between 2000 and 2020 found that
78.8% of 1,904 patients who received compassionate phage therapy
experienced clinical improvement, and pathogen eradication was
achieved in 86.7% of cases (8). Similarly, a retrospective case series
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of 100 consecutive phage therapy cases reported clinical improve-
ment in 77.2% of cases and pathogen eradication in 61.3% (9).
These findings, along with those of several in-depth, recent review
articles, highlight the potential and limitations of phage therapy in
the ongoing battle against MDR infections (3, 10-15).

This Review seeks to focus on the technical aspects of current
phage therapy practices, with a particular emphasis on technology
development and clinical applications. It also examines the devel-
opment of phage therapy products and protocols from the perspec-
tive of the conventional drug development pipeline, providing a
road map for future research and clinical translation efforts.

Phage preparation and administration

The implementation of phage therapy involves multiple steps,
from phage sourcing and characterization through manufactur-
ing, quality control (QC), therapeutic administration, and clinical
monitoring. While not all steps are universally applied in every
phage therapy, this section outlines the key stages in preparing and
delivering phage therapy.

Phage identification and selection

Phage sourcing, storage, and characterization. Phage banks serve as
essential repositories of diverse phages for therapeutic and research
purposes, ensuring long-term viability and swift access when needed
(Figure 1A) (16, 17). These banks, such as the Eliava Institute, the
Israeli Phage Bank, the Félix d’Hérelle Reference Center, the Leib-
niz Institute (DSMZ), and the Phage Australia Biobank, employ
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Figure 1. Development and implementation of phage therapy. (A) A summary of the key steps in phage
therapy development and clinical implementation. The process typically begins with phage identification and
selection, including phage bank establishment (sourcing, storage, and characterization of phages), followed by
susceptibility testing (using spot tests, plaque assays, efficiency of plating [EOP] assays, and growth kinetics
studies). The manufacturing phase involves phage propagation (using selected bacterial strains in liquid- or
solid-based systems) and rigorous purification with quality control measures (including endotoxin removal and
standardized quality protocols). The therapeutic administration phase encompasses clinical applications (con-
sidering various administration routes and dosing strategies) and therapeutic monitoring (tracking treatment
efficacy, patient response, and monitoring for potential resistance development and adverse events). Note that
these steps are not universally applied in all phage therapies. (B) Phage therapy approaches can be personal-
ized to individual patients (patient-specific phage preparation), fixed (preformulated), or administered as a
hybrid of the two approaches. The hybrid model represents an intermediate approach combining elements of

both personalized and fixed phage therapy strategies.

various storage methods (18, 19). Common techniques include stor-
age in buffer or growth media at 4°C, cryopreservation in glycerol at
—80°C or liquid nitrogen (either with or without host cells), and lyo-
philization for room temperature or cold storage (19, 20). The most
accessible and cost-effective method is 4°C storage, typically using
standard phage preservation media such as SM buffer (100 mM
NaCl, 8 mM MgSO,, 50 mM Tris-HCI, pH 7.5) or the original ster-
ile-filtered growth media. Lyophilization, while potentially causing
initial titer loss, offers advantages for long-term storage and trans-
port by freeze-drying in vacuum-sealed vials, often with stabilizing
additives like sucrose or polymers (21-26). To further minimize titer
loss for long-term storage, some facilities also preserve phages with-
in bacterial cells by freezing down cells shortly after phage infection
but before lysis occurs (27, 28). Storage stability varies among phages
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include whole-genome sequencing
using next-generation platforms,
biofilm inhibition assessment, and
regular monitoring of storage stabil-
ity through titer measurements over
time under different conditions.
Effective management of phage
banks requires multiple storage
sites, robust backup systems, access
controls, and efficient inventory
tracking to ensure the reliability
and accessibility of phage stocks for
therapeutic applications (34, 35).
Phage susceptibility testing. Phage
susceptibility testing is a crucial step
in selecting phages with activity
against target bacteria (Figure 1A).
It identifies phages for clinical use
and guides on dosing and admin-
istration strategies (36). Phage sus-
ceptibility is determined by com-
plex molecular interactions between
the phage and host throughout the
infection cycle, including phage
receptor-binding proteins, host sur-
face receptors, intracellular defense mechanisms, and phage lifestyle
(i.e., either lytic or lysogenic) (37—40). Most current therapies use
strictly lytic Caudovirales, particularly myoviruses and siphovirus-
es, owing to their broader host ranges and enhanced stability (13).

Predesigned phage preparation

While podoviruses are less commonly employed, select members of
this family have demonstrated therapeutic efficacy (13).

Bacterial cultures from a patient are tested against phages using
various in vitro culture-based techniques (41, 42). “Spot tests” apply
phage droplets to bacterial lawns to observe zones of inhibition after
overnight incubation. “Plaque assays” use serially diluted phage
samples to observe countable individual plaques. Plaque assays are
essential for confirming productive infection, as they distinguish
true virulent activity from nonproductive lysis phenomena such
as “lysis from without” (36, 43, 44). “Efficiency of plating (EOP)
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assays” provide quantitative measurements of phage lytic activity by
comparing its performance on test strains relative to a reference host
(43, 45). Higher EOP values may suggest potential new propaga-
tion hosts, though adoption requires careful consideration of growth
characteristics, safety profiles, yield consistency, and purification
efficiency, especially for therapeutic applications. “Growth kinetics
assays” complement these methods by monitoring bacterial growth
inhibition in real-time through optical density measurements. When
results differ between plaque formation and growth kinetics, each
assay provides complementary information: plaque assays confirm
productive infection cycles, while growth kinetics reveal killing rates
and resistance development patterns (36). These methods are also
employed to evaluate phage-antibiotic and phage-phage interactions
during cocktail design, as discussed in detail below.

Recent technological advances include automated optical den-
sity measurement systems (46—48), hydrogel-embedded “ready-to-
screen” plates (49), tablet-embedded ATP release assays (50), and
automated phage plaque image analysis software (51). However,
the field continues to lack universally accepted and rapid suscepti-
bility tests (36, 43, 52, 53). This limitation stems from fundamen-
tal challenges, including the potential disconnect between in vitro
assay results and in vivo conditions (particularly regarding bacterial
biofilms within the host) and the absence of standardized criteria
for categorizing bacterial isolates as “susceptible,” “intermediate,”
or “resistant.” (54). These factors can substantially impact the
assessment and prediction of phage therapy efficacy.

Efforts to establish phage susceptibility testing standards are
ongoing across multiple institutions. A Belgian consortium, com-
prising KU Leuven, the Queen Astrid Military Hospital (QAMH)
and Sciensano (Belgium'’s Federal Health Agency), has proposed
standards based on the practices at the Eliava Institute (9). These
require phages to demonstrate an EOP =0.1 on a patient’s strain
and maintain stable bacterial lysis for 6—48 hours at low multiplici-
ties of infection (MOIs; 0.0001-0.00001 phages per bacterium) at a
starting bacterial concentration of 10° CFU/mL. Different criteria
have been developed by other institutions: the Polish Academy of
Sciences requires >99% killing within 6 hours, while the Center
for Phage Technology at Texas A&M considers phages therapeutic
candidates based on reproducible plaque formation and stability in
physiological conditions (55, 56). However, comparative data eval-
uating the clinical effect of these varying standards remains limited.

To achieve these standards, phages are often preadapted to
patient strains through sequential phage-bacteria coincubation cycles
to select the fastest-clearing samples for rapid lysis (57). Adapta-
tions modify genes encoding for receptor-binding proteins and tail
fibers, enhancing phage-host interactions. Additional mutations may
enhance phage DNA injection, host range, replication, and lysis tim-
ing, with specific changes varying by phage-host combination.

Phage manufacturing
Phage manufacturing involves the production of therapeutic phag-
es for clinical use. It produces high-titer, pure phage preparations
that meet safety and potency standards for patient administration.
Phage manufacturing consists of three main phases: propagation,
purification, and QC (58, 59) (Figure 1A).

Phage propagation. Phages require a bacterial host (the “prop-
agation strain”) for multiplication. Key factors for selection of a
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propagation strain include optimal growth characteristics, absence
of lysogenic phages and virulence factors, and the ability to pro-
duce consistent high-titer yields. As improved strains can be iden-
tified, propagation strains may be updated over time. The propaga-
tion process involves inoculating phages into a growing bacterial
culture at specific MOIs (10--10? phages per bacterial cell), with
optimal ratios varying by phage type. The culture is then incubated
for 4-24 hours in liquid or solid media supplemented with calcium
and magnesium to promote phage binding to host bacteria. The
resulting lysates undergo centrifugation and filter sterilization, fol-
lowed by testing to determine the concentration of active phages.

Manufacturing occurs in-house at specialized phage therapy
centers or is outsourced (54, 60). Numerous centers, including the
Eliava Phage Therapy Center, the Phage Therapy Unit of the Polish
Academy of Sciences, the QAMH, Tailored Antibacterials and Inno-
vative Laboratories for phage (®) Research (TAIL®R), the Center
for Phage Therapy and Biology at Yale, and Phage Australia, operate
dedicated microbiology labs for patient-specific phage preparation
(9, 33, 61-64). Some facilities, like the Center for Innovative Phage
Applications and Therapeutics (IPATH) at UCSD and the Israeli
Phage Therapy Center (65, 66), focus on testing and clinical appli-
cation while outsourcing phage production. Academic research labs
also contribute to phage production (67, 68). Most centers produce
phages at benchtop scale (~50 mL to 1 L), while some companies
use larger bioreactors, such as the Cellexus Cellmaker (4-50 L) (69).

Phage purification. Purification is a critical step in preparing phag-
es for safe clinical use (Figure 1A), removing contaminants released
during phage replication and bacterial lysis (34). These contami-
nants, including endotoxins, bacterial nucleic acids, host proteins,
and media components, cause severe inflammatory responses (70).

Various purification methods (53, 63, 71) typically begin with
nuclease treatment to degrade bacterial DNA and RNA, followed
by polyethylene glycol precipitation to eliminate media compo-
nents and host proteins.

A critical focus of purification is the removal of endotoxins —
toxic components of bacterial cell walls that pose the primary safety
concern. Multiple approaches have been developed for endotoxin
removal, including organic solvent extraction and density gradient
ultracentrifugation (72—75). Column chromatography provides auto-
mated purification capabilities, but these require specialized equip-
ment, expertise, and phage-specific optimization (76, 77). Following
any purification steps, process-introduced chemicals are eliminated
via dialysis, filtration, or desalting columns (53). Notably, a recent
report demonstrated that simpler methods — combining low-speed
centrifugations, microfiltration, and cross-flow ultrafiltration — can
effectively reduce endotoxin levels to meet the clinical standard,
suggesting complex purification methods involving solvents may be
unnecessary for certain phages and applications (53).

QC. QC ensures the safety of therapeutic phage preparations.
Without phage-specific regulatory guidelines, phage producers
often develop internal QC protocols for phage identification, char-
acterization, and purity assessment (34, 70, 78). They generally fol-
low FDA-specified endotoxin limits for all injectable products (5
endotoxin units/kg/h), calculated from the maximum hourly safe
dosage using standard formulas (79). QC testing typically adheres
to national pharmacopoeia protocols for endotoxin and sterility
testing (80). Some jurisdictions, like Belgium, have specific guide-
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Table 1. Comparative analysis of personalized phage therapy and fixed phage cocktails

Parameter Personalized phage therapy Fixed phage therapy
Phages isolated in advance? Variable Yes

Phages characterized in advance? Variable Yes
Phage-phage interactions known? Variable Yes

Cocktail defined in advance? No (customized per patient) Yes
Phagogram done before treatment? Yes Variable
Therapeutic monitoring during therapy? Variable Variable

GMP production required for compassionate use? Not currently Not currently

GMP production required for scaled-up product? Yes Yes

Cost per patient for compassionate use? Low if non-GMP Low if non-GMP
Cost per patient at scale? High Low (Economies of scale)
Controlled clinical trials completed? No Yes (114)
Success in case reports? Yes (9) Yes (10, 111)

:

Straightforward regulatory pathway for
compassionate use?
Defined regulatory pathway for scaled up drug?

Yes, in most countries (eIND in USA, Helsinki Declaration
in Europe; SAS in Australia)
No (allowed in Georgia; allowed through magistral phage in Belgium;

Yes, in most countries (eIND in USA, Helsinki Declaration
in Europe; SAS in Australia)
Yes (traditional biologic drug development pathway)

unclear in other countries)

Potential for rapid availability for acute infections?

Unlikely

Yes

Comparison of key parameters between patient-specific (personalized) and preformulated (fixed) phage therapy approaches, including preparation
requirements, manufacturing standards, costs, clinical evidence, and regulatory considerations. Numbers in parentheses indicate relevant references.
GMP, good manufacturing practice; SAS, Special Access Scheme (a program administered by Australia’s Therapeutic Goods Administration that provides a
pathway for prescribers to access unapproved therapeutic goods for single patients on a case-by-case basis); eIND, Emergency Investigational New Drug.

lines for more comprehensive QC of phage preparations, including
whole-genome sequencing, potency testing, and pH assessment
(78). Similar QC protocols are used by phage producers in the Unit-
ed States and Australia. As therapeutic phage applications become
more widespread, the field is expected to adopt more standardized
and sophisticated purification and QC methods.

Therapeutic administration

Routes of administration. Phage therapy delivery methods are tai-
lored to the patient-specific requirements and site of infection (Fig-
ure 1A). While systemic administration involves intravenous (i.v.)
delivery, local administration methods vary according to the infec-
tion site. Respiratory tract infections use nebulization (81), urinary
tract infections may use intravesicular administration (82), pros-
thetic joint infections need intra-articular delivery (83), and skin
infections and wounds use topical applications (60). Local delivery
may reach higher phage concentrations at the target site compared
with i.v. administration (84-86). Some studies suggest that thera-
peutic outcomes may be improved through using both systemic and
localized delivery methods (12).

Dosing strategies. Phage therapy dosing varies in concentration
and frequency, ranging from a single dose to multiple daily doses
(every 6-, 8-, 12-, or 24-hour intervals) (12, 87). Individual doses
typically contain between 10° and 10'° plaque-forming units (PFU)
(88). The optimal dosing strategy is determined by multiple factors:
infection type and severity, phage pharmacokinetics (PK) (including
absorption, distribution, and excretion patterns), and accessibility to
the infection site (89, 90). For example, respiratory infections need
more frequent administration (3—4 times daily) than musculoskeletal
infections (once daily) (83, 91). High-dose approaches (>10° PFU/
mL) are typically preferred for acute infections requiring rapid bac-
terial clearance or cases involving poor accessibility or high bacterial

loads (92, 93). Lower doses are better suited for chronic infections
or scenarios where gradual bacterial reduction is desired (92, 93).

As clinical experience grows and as understanding of phage
PK improves, more refined and standardized dosing protocols are
expected to emerge (3).

Therapeutic monitoring. Treatment safety, efficacy, and patient
response are all assessed during monitoring of phage therapy (Fig-
ure 1A) (94). The scope and frequency of monitoring are typically
determined by the infection site, administration route, and patient’s
conditions. Clinical monitoring includes symptoms, physical exam-
inations and vital sign assessments before, during, and after phage
administration. Laboratory monitoring uses blood tests for inflam-
matory markers (e.g., c-reactive protein, erythrocyte sedimentation
rate), complete blood count, liver function tests, and basic meta-
bolic panels (64). Additional monitoring may include imaging
studies such as X-ray, CT, MRI, or PET scans. Treatment efficacy
uses direct monitoring of target bacteria and phages, using bacte-
rial culturing, plaque assays, and/or quantitative PCR (95). This
integrated monitoring approach not only ensures patient safety, but
also generates valuable data for refining treatment protocols and
improving future therapeutic outcomes.

Bacterial resistance to phages can emerge during treatment and
may be confirmed through phage susceptibility testing or genome
sequencing of resistant isolates (45). This resistance develops
through several mechanisms, including modifications to surface
receptors, CRISPR/Cas systems, restriction-modification systems,
or alterations in membrane transport systems. Importantly, these
resistance mechanisms often come with fitness trade-offs that impact
bacterial survival and virulence in patients. Such trade-offs can man-
ifest in bacteria as reduced growth rates, increased antibiotic sus-
ceptibility, or decreased virulence factor expression (3, 96). Under-
standing these fitness costs can have important clinical implications,
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as they may influence treatment outcomes and bacterial persistence,
and can inform phage therapeutic strategies. For example, phages
have been strategically deployed to select for phage-resistant bacte-
rial populations that show increased antibiotic susceptibility (97).
Throughout and following the treatment course, clinicians care-
fully monitor patients for both mild and serious adverse events (64).
‘While serious adverse events are rare, documented effects include
transient fever and other inflammatory responses after initial doses,
localized inflammation at infection sites, and occasional endotox-
in-related reactions during Gram-negative bacterial infections (64).
Some treatment centers implement immunological monitoring pro-
tocols, including measurement of antiphage antibodies and anal-
ysis of immune response genes, to better assess patients’ response
to phage therapy (95). The immune responses to phage treatment
appear to be both phage specific and dependent on the patient’s
immune status, with different phages eliciting varying responses —
from formation of neutralizing antibodies against phages to secre-
tion of antiinflammatory markers triggered by phages (98, 99).

Comparative analysis of phage therapy
approaches

Phage therapy in clinical settings is primarily deployed through
two main approaches: personalized phage therapy and fixed phage
therapy (100-102) (Figure 1B). However, recent developments have
revealed a more nuanced landscape of phage therapy implementa-
tion. In this section, we highlight advantages and limitations of per-
sonalized, fixed, and emerging “hybrid” approaches to phage therapy.

Personalized phage therapy. Personalized phage therapy involves
selecting phages to target the specific bacterial strain(s) responsible
for a patient’s infection (11, 12, 15, 65-72) (Table 1). This approach
is typically implemented at a “phage therapy center,” which often
constitutes academic-medical institutions providing phage treat-
ments to patients primarily on a compassionate use basis. Some
examples include the Eliava Phage Therapy Center, the Phage
Therapy Unit of the Polish Academy of Sciences, QAMH, the
Center for Phage Biology and Therapy at Yale, TAILOR, IPATH,
the Israeli Phage Therapy Center, Phage Australia, and the Mayo
Clinic Phage and Lysins Program.

Personalized phage therapy requires extensive screening of
phage libraries and/or environmental samples, coupled with phage
preadaptation to infection conditions (4, 63, 103—106). This approach
often involves iterative cycles of phage testing and preparation to
address phage-resistant bacterial isolates, and most centers employ
therapeutic monitoring during treatment. While clinical outcomes
have been promising, with reported improvement rates of 77.2% in
treated cases (8, 9), the approach faces several challenges, including
lack of standardization, time-consuming patient-specific prepara-
tion protocols (limiting utility in acute cases), and regulatory ambi-
guity. In the United States, treatments are conducted through the
FDA'’s emergency investigational new drug (eIND) program, which
requires comprehensive documentation of phage preparation, safety
testing, and treatment rationale. Some institutions have established
FDA master files to streamline this process. Despite encouraging
case reports and studies, controlled clinical efficacy trials using the
personalized approach have yet to be published (8, 9, 16).

Fixed phage therapy. Fixed phage therapy uses preformulated
phage preparations, often as phage cocktails, designed to target a
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broad range of bacterial species (107-110) (Table 1). This approach
aligns with traditional biologic drug development pathways, offer-
ing advantages of standardized, large-scale production that reduces
per-patient costs and simplifies logistics (109, 111). Development
of these cocktails involves strategic phage selection to maximize
therapeutic coverage, including targeting diverse bacterial receptors
and using data-driven approaches to identify phages with comple-
mentary host ranges (40, 111-113).

Fixed phage cocktail trials have shown limited success to date. A
recent systematic review revealed that only two of seven efficacy tri-
als demonstrated therapeutic success (114). This approach faces sev-
eral inherent challenges. First, the need to predict target pathogens
in advance affects both product development and clinical implemen-
tation. Most fixed cocktails target only a single bacterial species —
primarily Staphylococcus aureus or Pseudomonas aeruginosa — despite at
least 30 different bacterial species being involved in difficult-to-treat
infections. This narrow targeting creates recruitment challenges and
affects trial efficacy when actual infections do not match cocktail
specificity (9, 60, 115, 116). Additional technical hurdles include
maintaining therapeutic phage concentrations during long-term stor-
age and distribution of premade cocktails. Current trials are attempt-
ing to address these limitations through improved design strategies,
such as incorporating preliminary bacterial susceptibility screening
phases. However, more rigorously designed trials are needed to prop-
erly evaluate the potential of fixed phage therapy (16, 60, 115-119).

Emerging hybrid models. Hybrid models have emerged that com-
bine key strengths of both personalized and fixed phage therapy
approaches. For example, centers producing personalized phage
preparations have begun to administer the same phage preparations
to multiple patients, while still often performing the patient-specif-
ic phage susceptibility testing, analysis of phage-resistant mutants,
and/or therapeutic monitoring that is characteristic of the “person-
alized” approach (9, 62, 66, 120). This strategy can bring the econ-
omies of scale and streamlined logistics of preprepared cocktails
without sacrificing the benefits of the personalized approach.

However, integrating phage therapy into the current regula-
tory framework for licensed medicinal products presents signifi-
cant challenges. Traditional pharmaceutical regulations, designed
for static drug products, are poorly suited to accommodate phage
therapy’s dynamic nature, particularly the need for rapid updates
to counter bacterial evolution. Several key regulatory hurdles exist:
the requirement for extensive premarket safety and efficacy data
from large clinical trials is especially challenging for such a target-
ed therapeutic, while current manufacturing standards and QC
requirements are difficult to satisfy given the biological complexity
and natural variation inherent in phage products. Moving forward,
new regulatory frameworks may be necessary, potentially drawing
inspiration from existing models used for other complex biological
products, such as fecal microbiota transplants, blood safety proto-
cols, and the annual updating process for seasonal flu vaccines.

Gaps in phage therapy development

Despite advances in phage therapy, substantial knowledge gaps
persist. These challenges may best be understood through the
lens of a drug development pipeline, which includes lead dis-
covery and optimization, preclinical development, and clinical
development (Figure 2).
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Figure 2. Gaps in phage therapy through the perspective of a drug development pipeline. The drug development pathway consists of three major
phases: lead discovery and optimization, preclinical development, and clinical development. In lead discovery and optimization, key areas requiring further
research include phage cocktail design (understanding phage host range and phage-phage interactions), phage-antibiotic interactions (investigating both
synergistic and antagonistic effects), and genomic engineering (developing phage genomic editing techniques and synthetic phage genomes). Preclinical
development encompasses in vitro studies (focusing on phage stability), in vivo studies (addressing formulation for delivery and phage pharmacology),
and toxicity tests (evaluating toxicity pathways and dose-response models). The clinical development phase involves multiple critical components:
establishment of manufacturing processes, regulatory review and approval procedures, safety monitoring protocols, optimization of dosage and duration
regimens, efficacy evaluation, and postrelease monitoring. Addressing these knowledge gaps will be necessary for successful implementation of clinical

phage therapy and to broaden applications for phage-based strategies.

Lead discovery and optimization

Phage cocktail design. Designing optimally effective phage cocktails
remains a considerable challenge in phage therapy development.
Phage-phage interactions can be synergistic or antagonistic, species
dependent, and difficult to predict. The optimal number and ratio
of phages in a cocktail is unclear, and standardized protocols for
interrogating phage-phage combinations are lacking. Consequently,
phage cocktails are often selected empirically (116, 121).

Several models for phage cocktail design exist (112), including
strain-based and genomic algorithms (108, 122). Strain-based algo-
rithms use analysis of host range data across large bacterial strain
collections and prediction of minimum phage combinations pro-
viding maximum strain coverage. Genomic algorithms incorporate
additional layers of analysis, such as evaluation of bacterial recep-
tor genes and prediction of phage-host interactions based on recep-
tor recognition patterns, and then assessment of potential resis-
tance mechanisms through genome mining. These computational
approaches can be used individually or in combination to optimize
cocktail composition. Alternative approaches include experimental-
ly matching phages to each individual bacterial strain in a collection
(123-125). However, scaling up these approaches to encompass the
vast diversity of bacteria in clinical settings is challenging.

Bacterial receptors play a crucial role in determining phage host
range (40), and theoretically, creating cocktails that target all pos-
sible bacterial receptor specificities could provide broad coverage.
Cocktails containing phages using different receptors have explored
this strategy (113), though they have typically been limited to a few
strains and have not consistently achieved bacterial eradication.

Challenges regarding cocktail design include insufficient coverage
of receptor types, emergence of cross-resistance between phages,
and inadequate phage concentrations to prevent resistant subpop-
ulations from emerging (108). Recent attempts combining phages
targeting multiple nonredundant receptors have been successful
in biofilms and in an animal wound infection model against large
numbers of diverse clinical isolates of P. aeruginosa and S. aureus
(111). While this approach offers a promising direction for future
phage cocktail design, some bacterial species may still develop resis-
tance. For some species, exploiting trade-offs associated with phage
resistance, such as reduced virulence or antibiotic resensitization,
may thus be necessary alongside cocktail design strategies (3).

Phage-antibiotic interactions. Notable gaps remain in optimizing
phage-antibiotic interactions for clinical use. Some phages act syner-
gistically with antibiotics (8, 117, 126, 127). Some antibiotics enhance
phage activity at subinhibitory concentrations (87, 128, 129), while
some can completely suppress phage resistance development at high
concentrations (127). Phages can also resensitize antibiotic-resistant
bacteria by targeting resistance mechanisms such as efflux pumps or
outer membrane components as receptors (9, 97, 130-132). How-
ever, some antibiotics, particularly protein synthesis inhibitors, can
antagonize phage activity by interfering with phage replication (133).
The specific pairing of phage and antibiotic is challenging to predict
but crucial for optimizing treatment efficacy (109, 127).

Both personalized and fixed phage therapy often incorporate
combination therapy with antibiotics to enhance efficacy and miti-
gate resistance development (126—128, 134). In vitro assessment of
phage-antibiotic synergy is a common practice to guide combination
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therapy (135), and successful outcomes using this approach have
been reported in several studies (136). For instance, in a study of 100
cases employing personalized phage therapy, phages were deployed
alongside antibiotics in approximately 70% of cases, resulting in great
outcome (9). Further research is needed to understand the long-term
phage-antibiotic-bacterial dynamics and develop predictive models
for optimizing phage-antibiotic therapy in clinical settings.

Phage genome engineering. Wild-type phages demonstrate ther-
apeutic potential (137) but have challenges, including narrow host
ranges, lysogenic conversion, immunological clearance, and variable
stability (87). To overcome these, researchers use genetic engineer-
ing approaches. Recent progress focuses on two approaches: editing
phage genomes and synthesizing new ones (4, 138). For genome
editing, CRISPR/Cas systems and methods like BRED (Bacterio-
phage Recombineering of Electroporated DNA) have been devel-
oped (139-143). Production of synthetic phage is also advancing
rapidly toward the goal of chemical synthesis of entire phage
genomes in bacteria or cell-free systems (35, 144, 145). This syn-
thetic approach could markedly improve scalability and safety by
eliminating bacterial components from the manufacturing process.

The regulatory landscape for engineered phages varies by
jurisdiction. In the United States, engineered phages fall under
FDA oversight as biological products, while the European Medi-
cines Agency considers them Advanced Therapy Medicinal Prod-
ucts. Several engineered phages have been successfully proceeded
through eIND provisions, including modified lysogenic phages with
deleted lysogeny genes and phages engineered for enhanced stability
or biofilm degradation (146). However, owing to safety consider-
ations, regulatory frameworks generally favor strictly lytic phages for
therapeutic applications over lysogenic or engineered phages (147).

The future of phage engineering will likely focus on both opti-
mizing therapeutic applications and expanding into new frontiers,
including targeted delivery of gene editing payloads and micro-
biome modulation (4). Advances in DNA synthesis will enhance
flexibility in designing synthetic phages, improving properties like
efficacy, stability, delivery, and safety profiles (144). Additionally,
generative Al models trained on phage genomic sequences (148)
open new possibilities for designing and synthesizing phages with
desired properties from scratch. However, successful implementa-
tion of these approaches will still require in-depth understanding
of phage biology (149), and thus continued research will remain
crucial for advancing phage engineering.

Preclinical development

Phage stability. Substantial gaps remain in controlling phage sta-
bility, which encompasses titer in solution and physical integrity
over time. Basic principles include stability at physiological pH
(150-152) and the importance of cations for stability and activi-
ty (153-156). However, many factors contributing to stability loss
are poorly understood and phage specific. Phages are commonly
formulated in buffered, cation-supplemented saline solutions (157),
but various factors can reduce phage titer over time. These include
adsorption to surfaces (e.g., storage containers, catheters) (158) and
interactions with bacterial components such as lipids, membrane
debris, or vesicles (159-161). Some phages are more stable when
purified, while others maintain better stability in lysates, highlight-
ing the need for phage-specific optimization.
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Physical factors impact phage stability, including temperature
extremes that cause denaturation, aggregation, or structural loss
(162-165). Oxidative stress creates aggregates and fragments (166—
169), while UV light exposure degrades phage particles (163, 170).
Common mitigation strategies include controlled temperatures,
cryoprotectants, and UV-protective additives (171). The phage-
specific nature of these environmental stressors highlight the chal-
lenges in developing universally effective storage protocols.

Phage stability is measured through plaque assay titers and
qPCR. However, these methods do not capture physical changes
like aggregation or degradation. Recent advancements, such as
using dynamic light scattering, offer new ways to rapidly assess
changes in phage bioactivity (163), but more work is needed to
develop comprehensive, standardized stability assessment methods
across diverse therapeutic applications.

Phage formulation for clinical applications. While clinical appli-
cations of phage formulations show safety (105, 172-175), crucial
gaps persist in optimizing formulations for diverse administration
routes and clinical scenarios.

For systemic administration, phages are often reconstituted in
saline or pH-balanced buffers (83, 176-178), though optimal for-
mulation varies by infections. Recent advances in formulation tech-
nologies, particularly spray-drying, show promise for enhancing
stability and shelf-life (148), offering improved solutions for storage,
transport, and administration.

Oral phage therapy may necessitate protection from stomach acid,
using encapsulation or coadministration with pH-raising additives (93,
179, 180). Animal studies demonstrate improved bioavailability when
phages are coadministered with agents that overcome the stomach
acid barrier (181). Notably, a diverse range of formulation methodol-
ogies has emerged, including microencapsulation, nanocarriers, and
advanced polymer-based delivery systems (182). However, formula-
tions ensuring consistent oral bioavailability are yet to be determined.

‘Wound phage therapy has primarily relied on two approach-
es: topical solutions or phage-impregnated dressings, albeit with
variable efficacy (183-186). For respiratory applications, delivery
options include nebulized suspensions, dry powders, and soft mist
inhalers, with dry powder formulations offering improved half-life
(187) and soft mist inhalers providing superior lung delivery (188).

Preclinical studies are exploring various excipient strategies,
including ionic hydrogels, microparticles, and liposomes for rapid
burst-release, while fibrin glue and dynamic covalent cross-linked
hydrogels enable extended-release dynamics (189-197). Despite
these advances, further research is needed to optimize phage formu-
lations to maximize therapeutic benefit while maintaining safety
across different administration routes and infection types.

Phage pharmacology. Understanding the PK and pharmacodynam-
ics (PD) of phages is crucial for optimizing therapeutic efficacy in
clinical settings (93, 177, 198). However, achieving a comprehensive
understanding of PK/PD for phage therapy is challenging owing to
the complex three-way interactions between phages, bacteria, and the
human host. Since nearly every phage-bacteria-patient combination
may exhibit a unique PK/PD profile, developing standardized mod-
els applicable across diverse clinical scenarios remains challenging.

PK in phage therapy involves studying the absorption, distribu-
tion, metabolism, and excretion of phages in the body (199, 200).
Administration routes present distinct challenges: oral adminis-
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tration must overcome gastric conditions (201), while i.v. delivery
faces potential clearance by the reticuloendothelial system (202,
203). The role of host immune status in phage PK is emerging as
an important consideration, providing insights into phage-immune
interactions emerging from recent studies (99, 204). Mouse models
have shown that immune status can significantly impact phage ther-
apy effectiveness (205, 206), suggesting that immunocompromised
hosts may experience prolonged phage circulation times, which
could potentially enhance therapeutic effects. Phage-immune inter-
actions also affect therapeutic outcomes differently in acute versus
chronic infections (206). Understanding these complex pharmaco-
kinetic processes and immune-phage interactions is crucial for opti-
mizing phage therapy efficacy and safety.

Phage PD, which describes the interaction between phages and
their bacterial targets in vivo (92, 207), remains poorly understood.
A key challenge is assessing the MOI in vivo, which is known to be
important in vitro but nearly impossible to assess in patients due to
uncertainties in bacterial load at the infection site. This gap neces-
sitates systematic studies to understand the relationship between
MO, killing efficiency, and resistance development (195).

Modeling PK/PD for phage therapy is further complicated by
the ability of phages to replicate at infection sites, unlike tradition-
al antibiotics. Comprehensive models are needed that account for
phage replication and bacterial population dynamics. Additional-
ly, standardizing phage measurement techniques, such as plaque
assays and qPCR, is crucial for accurately determining PK/PD
parameters across different studies and clinical scenarios.

Clinical development

Clinical trial design. It is widely acknowledged that controlled clin-
ical trials are needed to demonstrate phage therapy efficacy. Past
phage therapy clinical trial failures are largely attributed to trial
design issues (as described in Fixed phage therapy). As a result, the
clinical efficacy of phage therapy has not yet been fully evaluated
for any indication.

Encouragingly, multiple organizations are now funding ran-
domized controlled trials. The US Department of Defense, NIH,
and biotechnology companies are investigating phage therapy for
various conditions, including diabetic foot ulcers, respiratory infec-
tions, prosthetic joint infections, and urinary tract infections (208,
209). Preliminary results from these trials show promise.

New innovative nonrandomized trial designs have also emerged
to collect data from personalized phage therapy treatments world-
wide, while informing future controlled trial designs. For example,
Phage Australia’s STAMP (Standardized Treatment and Monitor-
ing Protocol) study uses an open-label, single-arm design to assess
safety, tolerability, and feasibility of phage therapy across multiple
centers, pathogens, and clinical indications (63). This allows for
flexible, patient-specific phage matching while maintaining consis-
tent dosing and monitoring across patients. Similarly, the PHAGE-
FORCE registry at UZ Leuven in Belgium offers a prospective,
observational approach comparing phage therapy outcomes against
standard of care (210). In this design, patients receive phage thera-
py with standard care when active phages are available; otherwise,
they form the control groups receiving standard of care alone. This
diverse range of ongoing trials demonstrates the field’s momen-
tum toward establishing phage therapy in modern clinical practice,
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while innovating on past approaches to finally evaluate if, when,
and how phage therapy can be efficacious in the clinic.

Phage therapy is not alone in requiring innovations on tra-
ditional clinical trial design to demonstrate efficacy. CAR T cell
therapy has successfully demonstrated efficacy for personalized
cancer treatments despite patient-specific requirements (211).
Palliative care research has employed “n of 1 trials” to address
challenges in patient recruitment and high interpatient variability
(212). Although these approaches could inform phage therapy trial
designs, the distinctive economic challenges in antimicrobial devel-
opment may necessitate further innovations to balance scientific
rigor with cost-effectiveness in clinical trials.

Conclusion

The need for therapeutics against MDR infections is growing,
and the field of phage therapy is rapidly advancing to meet this
challenge. In recent years there has been substantial refinement in
approaches for phage selection, production, and delivery. Improve-
ments in phage technology are enabling personalized phage thera-
py, while advancements in Al and bioengineering seem poised to
create substantial therapeutic and commercial opportunities.

Nonetheless, numerous challenges remain. While the gener-
al steps required for successful clinical phage therapy implemen-
tation are becoming clearer, widespread availability still depends
on addressing key challenges across all approaches. These include
optimizing phage cocktail design, standardizing phage susceptibil-
ity testing, developing PK/PD methods, and improving stability
and formulation. Determining optimal parameters for specific clin-
ical indications while reducing preparation time will be critical in
improving outcomes and broadening the applicability. Many acute
infections like sepsis are extremely time sensitive, which may limit
the applicability of personalized phage therapy. Chronic infections
often involve biofilms, which can limit phage efficacy and are not
well accounted for in standard susceptibility testing. Nonetheless,
despite these challenges, reported clinical benefits still have exceed-
ed 70% in treated cases in several recent series.

‘While we are encouraged by the recent progress in the field, it is
clear that a drug development pipeline for phage therapy is needed
and that this is likely to emerge only with government support. For-
tunately, several national governments, including those of Belgium,
Australia, the United States, and Great Britain, have recognized the
promise of phage therapy and have contributed to bringing it to its
current state. However, given the broken economics of antimicrobi-
al development, increased government involvement through direct
funding and regulatory changes is needed. Legislation like the pro-
posed PASTEUR Act, which would authorize the US government
to enter into subscription contracts for critical-need antimicrobials,
as well as provide $6 billion in funding, could support this pipeline.
Such initiatives could provide the necessary incentives for drug devel-
opers to invest in phage therapy development, ultimately renewing
our arsenal against infectious diseases for future generations.
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