International Journal of Applied Mathematics

Volume 3 No. 4 2000, 441-447

Q-QUADRATIC CONVERGENCE ON NEWTON'S METHOD FROM DATA AT ONE POINT

J.X. da Cruz Neto¹, O.P. Ferreira²

¹DM/CCN/Universidade Federal do Piauí
Campus da Ininga, CEP 64.049-550, Teresina, PI, BRAZIL
e-mail: jxavier@ufpi.br

²IME/Universidade Federal de Goiás
Campus Samambaia, CEP 74001-970, Goiânia, GO, BRAZIL
e-mail: orizon@mat.ufg.br

Abstract: Smale's Theorem on Newton's Method for analytic systems provides existence of a solution and R-quadratic convergence of the method from data at one point. In this paper, we proof that Newton Method under Smale's hypothesis is Q-quadratic convergent and as a consequence, we deduce an error estimate.

AMS Subj. Classification: 65H10, 65G99

Key Words: Newton's Method, Smale's hypotesis, q-quadratic convergence

1. Introduction

By "solving" F(x)=0 we shall understand to get an "approximated solution", i.e., to get a point x_0 such that Newton Method for solving F(x)=0, with starting point x_0 generates a sequence that converges to a solution. In particular, an "approximated solution" implies the existence of a solution. The most important question is to decide whether a given point is an approximated solution. Smale in [4] has given conditions under which a point is an approximated solution using only the information available at the starting point.

Received: August 17, 2000

© 2000 Academic Publications

The aim of this paper is to prove the q-quadratic convergence of Newton Method under Smale's conditions, which is a new result, once up to now only r-quadratic convergence whas proved. As a consequence, we deduce an error estimate.

2. Auxiliary Results

Let $I\!\!E$ and $I\!\!F$ be Banach spaces and $f: D_r(x_0) \longrightarrow I\!\!F$ be an analytic map, where $x_0 \in I\!\!E$ and $D_r(x_0) = \{x \in I\!\!E : ||x - x_0|| \le r\}$. The derivative of f at $x \in D_r(x_0)$ will be denoted by Df(x) (and the higher order derivatives by $D^kf(x)$). Newton Method for solving

$$f(x) = 0 (1)$$

generates the sequence $\{x_n\}$ by the iterative process

$$x_n = x_{n-1} - Df(x_{n-1})^{-1} f(x_{n-1})$$
(2)

provided that, for all $n \geq 1$, $Df(x_k)^{-1}$ exists. In [4], Smale studied the Newton Method in this context and deduced consequences from data at a single point, but only R-quadratic convergence, see Ortega et al [1], is obtained. As in Shub at al [3], we use the same notation to obtain Q-quadratic convergence, see Ortega at al [1], of Newton Method for this context.

For every point $x \in D_r(x_0)$ define

$$\beta(f,x) = \left| \left| Df(x)^{-1} f(x) \right| \right|, \quad \gamma(f,x) = \sup_{k>1} \left| \left| \frac{Df(x)^{-1} D^k f(x)}{k!} \right| \right|^{\frac{1}{k-1}}$$
 (3)

and if $Df(x)^{-1}$ does not exist, define $\beta(f,x) = \infty$ and $\gamma(f,x) = \infty$. Now define, $\alpha(f,x) = \beta(f,x)\gamma(f,x)$.

The following expressions play an important role in the next results:

$$\tau(\alpha) = \frac{(1+\alpha) - \sqrt{(1+\alpha)^2 - 8\alpha}}{4}, \text{ for } 0 \le \alpha \le 3 - 2\sqrt{2},$$
 (4)

$$\alpha_0 = \frac{1}{4}(13 - 3\sqrt{17}). \tag{5}$$

A point x_0 is called an approximated zero of f, if the sequence $\{x_n\}$, generated by (2), is well defined and satisfies:

$$\left| \left| x_n - x_{n-1} \right| \right| \le \left(\frac{1}{2} \right)^{2^{n-1} - 1} \left| \left| x_1 - x_0 \right| \right|$$
 (6)

for all $n \ge 1$. The next result gives us conditions under which a point x_0 is an approximated zero, for the proof see Shub at al [3].

Theorem 1. Let $f \colon D_r(x_0) \longrightarrow \mathbb{F}$ be analytic map, $\beta = \beta(f,x_0), \gamma = \gamma(f,x_0), \quad \alpha = \beta \gamma \text{ and } r \geq \frac{\tau(\alpha)}{\gamma}.$ Then if $\alpha \leq \alpha_0$, the Newton iterates $x_1,x_2,...$ are defined well, converge to $\zeta \in D_r(x_0)$ with $f(\zeta) = 0$ and for all $n \geq 1$

$$\left| \left| x_n - x_{n-1} \right| \right| \le \left(\frac{1}{2} \right)^{2^{n-1} - 1} \left| \left| x_1 - x_0 \right| \right|.$$
 (7)

Moreover, $||\zeta - x_0|| \le \frac{\tau(\alpha)}{\gamma}$, and $||\zeta - x_1|| \le \frac{\tau(\alpha) - \alpha}{\gamma}$.

Theorem 1 implies that the sequence $\{x_k\}$ satisfies

$$||x_n - \zeta|| \le \left(\frac{1}{2}\right)^{2^n} ||x_1 - x_0|| K,$$
 (8)

where $K = \sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^{2^{n-1}-1}$, see Smale [4], and this inequality signifies that the sequence $\{x_k\}$ has convergence R-quadratic.

Now, for each $\beta, \gamma > 0$, define

$$h_{\beta,\gamma}(t) = \beta - t + \frac{\gamma t^2}{1 - \gamma t}.$$
 (9)

Let $\alpha = \beta \gamma$ satisfy $(\alpha + 1) - 8\alpha > 0$ or equivalently $0 < \alpha < 3 - 2\sqrt{2}$. Then $h_{\beta,\gamma}(t) = 0$ has two distinct real positive roots, the smaller root is

$$\frac{\tau(\alpha)}{\gamma} = \frac{(1+\alpha) - \sqrt{(1+\alpha)^2 - 8\alpha}}{4\gamma}.$$
 (10)

Moreover $d^2h_{\beta,\gamma}/dt^2(t) > 0$ as long as $0 < t < \frac{1}{\gamma}$ which implies that $h_{\beta,\gamma}$ is convex in this interval. Thus Newton Method, to solving $h_{\beta,\gamma}(t) = 0$, starting at $t_0 = 0$ generates the monotone sequence $\{t_n\}$ which converges to $\frac{\tau(\alpha)}{\alpha}$.

Theorem 2. (Domination Theorem) Let $f: D_r(x_0) \to \mathbb{F}$ be analytic map, $\beta = \beta(f, x_0), \gamma = \gamma(f, x_0), \quad \alpha = \beta \gamma$ and suppose $r \geq \frac{\tau(\alpha)}{\gamma}$ and $\alpha \leq \alpha_0$. These values of β , α define $h_{\beta,\gamma}$ and the sequence $\{t_k\}$. Then

$$||x_n - x_{n-1}|| \le t_n - t_{n-1}, \quad n = 1, 2, \dots,$$
 (11)

where $\{x_n\}$ is the Newton sequence of f starting at x_0 .

It follows from (11) that

$$||x_n - x_0|| \le t_n, \quad n = 1, 2, \dots$$
 (12)

and this implies that $\{x_n\} \subset D_{\underline{\tau(\alpha)}}(x_0)$.

Let

$$\psi(u) = 2u^2 - 4u + 1, \quad 0 \le u \le 1 - \frac{\sqrt{2}}{2},\tag{13}$$

so that $0 \le \psi(u) \le 1$.

Lemma 1. Let $f: D_r(x_0) \longrightarrow \mathbb{F}$ be analytic map and let $\gamma = \gamma(f, x_0)$. If $x \in D_r(x_0)$ with $\psi(u) > 0$, where $u = ||x - x_0||\gamma$, then

(1) Df(x) is invertible;

(2)
$$||Df(x)^{-1}Df(x_0)|| \leq \frac{(1-u)^2}{\psi(u)}$$
.

We observe that

$$\frac{(1-u)^2}{\psi(u)} = -\frac{1}{h'_{\beta,\gamma}(u)}. (14)$$

Since $h'_{\beta,\gamma}$ is monotone, then from (14) it follows that, for all $\alpha \leq \alpha_0$, and $x \in D_{\frac{\tau(\alpha)}{\alpha}}(x_0) = \{x \in E : ||x - x_0|| \leq \frac{\tau(\alpha)}{\gamma}\},$

$$\frac{(1-||x-x_0||\gamma)^2}{\psi(||x-x_0||\gamma)} \le \frac{(1-\tau(\alpha))^2}{\psi(\tau(\alpha))}.$$
 (15)

3. Q-Quadratic Convergence

This is the main section. Here we prove that, under Smale's Conditions, the sequence generated by Newton Method Q-quadratically converges and as a consequence, we deduce an error estimate.

Lemma 2. (Lemma of Calculus) Let $f: D_r(x_0) \longrightarrow \mathbb{F}$ be continuous, differentiable in the interior $D_r^o(x_0)$ of $D_r(x_0)$ and $Df(z_0)$ be non-singular. Suppose that, for all $x, x' \in D_r(x_0)$

$$||Df(x_0)^{-1}(Df(x) - Df(x'))|| \le L||x' - x||.$$

If $x \in D_r^o(x_0)$, $v \in \mathbb{E}$, $t \in R$ and $x + tv \in D_r(x_0)$, then

$$f(x+tv) = f(x) + tDf(x) v + R(t)$$
 with $||Df(x_0)^{-1}R(t)|| \le \frac{L}{2}t^2||v||^2$.

Proof. Follows from "Fundamental Theorem of Calculus".

Lemma 3. Let $f: D_r(x_0) \longrightarrow \mathbb{F}$ be analytic map, $\beta = \beta(f, x_0), \gamma = \gamma(f, x_0), \quad \alpha = \beta \gamma \text{ and } r > \frac{\tau(\alpha)}{\gamma}.$ If $\alpha \leq \alpha_0$ then, for all $x, x' \in D_{\frac{\tau(\alpha)}{\gamma}}(x_0)$

$$||Df(x_0)^{-1}(Df(x') - Df(x))|| \le \frac{2\gamma}{(1 - \tau(\alpha))^3} ||x' - x||.$$
 (16)

Proof. Let $w \in D_{\frac{\tau(\alpha)}{\alpha}}(x_0)$. Note that

$$Df(x_0)^{-1}D^2f(w) = \sum_{0}^{\infty} \frac{1}{k!} Df(x_0)^{-1}D^{k+2}f(x_0)(w - x_0)^k.$$
 (17)

Since $\alpha \leq \alpha_0$ we have that $\gamma ||w - x_0|| \leq \tau(\alpha) < 1$, thus from (17) it follows that

$$|Df(x_0)^{-1}D^2F(w)|| \leq \gamma \sum_{0}^{\infty} (k+2)(k+1)(\gamma||w-x_0||)^k$$

$$= \frac{2\gamma}{(1-\gamma||w-x_0||)^3}$$

$$\leq \frac{2\gamma}{(1-\tau(\alpha))^3}.$$
(18)

But since

$$||Df(x_0)^{-1}(Df(x) - Df(x'))|| \le \sup_{w \in D_r(x_0)} ||Df(x_0)^{-1}D^2f(w)|| ||x' - x||,$$

it follows from (18) the statement of the lemma.

Theorem 3. Let $f: D_r(x_0) \longrightarrow \mathbb{F}$ be analytic map, $\beta = \beta(f, x_0), \gamma = \gamma(f, x_0), \ \alpha = \beta \gamma \text{ and } r > \frac{\tau(\alpha)}{\gamma}$. Then if $\alpha \leq \alpha_0$, the Newton iterates x_1, x_2, \ldots are defined well, converge to $\zeta \in D_r(x_0)$ with $f(\zeta) = 0$ and there exists a constant $M = M(x_0)$ such that

$$||x_{n+1} - \zeta|| \le M||x_n - \zeta||^2$$

for all $n \geq 1$.

Proof. Since $\alpha \leq \alpha_0$ from Theorem 1 it follows that x_0 is an approximated zero of f, then the sequence $\{x_n\}$ converges to ζ , where $f(\zeta) = 0$ and from equation (12) the sequence $\{x_n\} \subset D_{\frac{\tau(\alpha)}{\gamma}}(x_0)$. Furthermore, from Lemma 1 and (15), it follows that

$$||Df(x_n)^{-1}Df(x_0)|| \le \frac{(1-\tau(\alpha))^2}{\psi(\tau(\alpha))}.$$
 (19)

Now from Lemma 2 and Lemma 3 it follows that

$$||DF(x_0)^{-1}R_n|| \le \frac{2\gamma}{2(1-\tau(\alpha))^3}||x_n-\zeta||^2,$$
 (20)

where

$$f(\zeta) = f(x_n) + Df(x_n) \left(\zeta - x_n\right) + R_n. \tag{21}$$

Thus the inequalities (19), (20) and $f(\zeta) = 0$ imply that

$$||x_{n+1} - \zeta|| \leq ||Df(x_n)^{-1}Df(x_0)|| ||Df(x_0)^{-1}R_n|| \leq M||x_n - \zeta||^2,$$
(22)

where
$$M = \frac{(1-\tau(\alpha))^2}{\psi(\tau(\alpha))} \frac{2\gamma}{2(1-\tau(\alpha))^3} = \frac{\gamma}{\psi(\tau(\alpha))(1-\tau(\alpha))}$$
.

Theorem 4. Let $\{x_n\}$ be a sequence in Banach space $I\!\!E$, convergent to ζ such that

$$||x_{n+1} - \zeta|| \le a||x_n - \zeta||^2 \tag{23}$$

for all n and a positive constant a. If $\mu<1/4$, $a||x_{n+1}-x_n||<\mu$ and $a||\zeta-x_n||\leq \frac{2}{1+\sqrt{1-4\mu}}$, then

$$\frac{2}{1+\sqrt{1+4\mu}} \le \frac{||\zeta - x_n||}{||x_{n+1} - x_n||} \le \frac{2}{1+\sqrt{1-4\mu}}.$$

Proof. See Ostrowski [2], pp. 372, 373.

From Theorem 3 and Theorem 4 we obtain the following theorem.

Theorem 5. Let $f: D_r(x_0) \longrightarrow \mathbb{F}$ be analytic map, $\beta = \beta(f, x_0), \gamma = \gamma(f, x_0), \quad \alpha = \beta \gamma \text{ and } r \geq \frac{\tau(\alpha)}{\gamma}$. Then if $\alpha \leq \alpha_0$, the Newton iterates x_1, x_2, \ldots are defined well, converge to $\zeta \in D_r(x_0)$ with $f(\zeta) = 0$ and there exists a constant $\mu \leq .115146$ such that

$$\frac{2}{1+\sqrt{1+4\mu}} \le \frac{\|\zeta - x_n\|}{\|x_{n+1} - x_n\|} \le \frac{2}{1+\sqrt{1-4\mu}},\tag{24}$$

for all $n \geq 2$.

Proof. From Theorem 3 follows that $\{x_n\}$ satisfies (23) with a=M. Define $\mu=\frac{\alpha_0}{8\psi(\tau(\alpha_0))(1-\tau(\alpha_0))}\leq .115146<1/4$, where the functions τ and ψ were defined respectively in (10) and (13). Now by (7)

$$M||x_{n+1} - x_n|| \le \frac{2M\beta}{2^{2^n}} \le \frac{\alpha}{8\psi(\tau(\alpha))(1 - \tau(\alpha))} \le \mu.$$

447

For n > 2, and by (8) $\|\zeta - x_n\| \leq \frac{K\beta}{2^{2^n-1}}$, where $K \leq \frac{7}{4}$, we have

$$M||x_* - x_n|| \le \frac{7\alpha}{16\psi(\tau(\alpha))(1 - \tau(\alpha))} \le \frac{7\mu}{2} \le \frac{1 + \sqrt{1 - 4\mu}}{2}.$$

Thus the statement of the theorem follows from Theorem 4.

References

- [1] J. M. Ortega and W. C. Rheimboldt, Interactive Solution of Nonlinear Equations in Several Variables, Academic Press, New York (1970).
- [2] A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York (1973).
- [3] M. Shub and S. Smale, Complexity of Bezout's theorem, I: Geometric aspects, Journal of the American Mathematical Society, 6, No. 2 (1993), 459-499.
- [4] S. Smale, Newton method estimates from data at one point, In: The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics (R. Ewing, K. Gross, C. Martin, Eds.), Springer-Verlag, New York (1986), 185-196.
- [5] B. F. Svaiter, Q-quadratic convergence of Newton method on Kantorovich theorem, *Preprint* (1999).

