
Cell theory provided an entirely new framework for 
understanding biology and disease by asserting that 
cells are the basic unit of life1. The subsequent discov-
ery that DNA is the heritable programme that encodes 
the proteins that carry out cellular functions led to 
the development of the fields of modern genetics and 
genomics2. Although bulk approaches for studying 
genetic variation have identified thousands of new 
unicellular species and determined genetic aetiologies 
for thousands of human diseases, most of that work 
has been done at the level of the ecosystem or organ-
ism3,4. However, we now know that diversity within 
an ecosystem of unicellular species is far greater than 
we can accurately measure by studying a mixed group 
of organisms, and that the genomes within the cells of 
an individual multicellular organism are not always 
the same.

Single-cell genomics aims to provide new per-
spectives to our understanding of genetics by bring-
ing the study of genomes to the cellular level (FIG. 1). 
These tools are opening up new frontiers by dissect-
ing the contributions of individual cells to the biology 
of ecosystems and organisms. For example, it is now 
possible to use single-cell genomics to identify and 
assemble the genomes of unculturable microorgan-
isms5, evaluate the roles of genetic mosaicism in normal 
physiology and disease6, and determine the contribu-
tions of intra-tumour genetic heterogeneity in cancer 
development or treatment response7. However, this 
field rests on the ability to study a single DNA mol-
ecule from individually isolated cells, a process that is  
technically challenging.

In this Review, we describe the current state of the 
field, including approaches for cell isolation, whole-
genome amplification (WGA), DNA sequencing con-
siderations and sequence data analysis, and highlight 
how recent progress is addressing some of the technical 
challenges associated with these approaches. We then 
discuss how those advancements have begun to fulfil 
some of the ambitious aspirations for the field in appli-
cations such as identifying new features of microbial 
ecosystems and characterizing human intercellular 
genetic heterogeneity, in particular in cancer.

Technological challenges
Acquiring high-quality single-cell sequencing data has 
four primary technical challenges: efficient physical iso-
lation of individual cells; amplification of the genome of 
that single cell to acquire sufficient material for down-
stream analyses; querying the genome in a cost-effective 
manner to identify variation that can test the hypotheses 
of the study; and interpreting the data within the con-
text of biases and errors that are introduced during the 
first three steps. To maximize the quality of single-cell 
data and to ensure that the signal is separable from 
technical noise, each of these variables requires careful 
consideration when designing single-cell studies.

Cell isolation. The first step in isolating individual 
cells from primary samples is to produce a suspension 
of viable single cells. This is not trivial when working 
with complex solid tissues, which require mechanical or 
enzymatic dissociation that keeps the cells viable while 
not biasing for specific subpopulations. In addition, 
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Abstract | The field of single-cell genomics is advancing rapidly and is generating many new 
insights into complex biological systems, ranging from the diversity of microbial ecosystems 
to the genomics of human cancer. In this Review, we provide an overview of the current state 
of the field of single-cell genome sequencing. First, we focus on the technical challenges of 
making measurements that start from a single molecule of DNA, and then explore how some 
of these recent methodological advancements have enabled the discovery of unexpected new 
biology. Areas highlighted include the application of single-cell genomics to interrogate 
microbial dark matter and to evaluate the pathogenic roles of genetic mosaicism in 
multicellular organisms, with a focus on cancer. We then attempt to predict advances we 
expect to see in the next few years.
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Optical tweezers
Devices that use a laser to 
manipulate submicron 
particles, such as bacterial cells 
or cellular macromolecules.

diseased tissues can have different dissociation kinet-
ics when compared with their normal counterparts, as 
well as varied dissociation between samples of the same 
disease. Standard digestion protocols for commonly 
studied tissues, as well as vigorous approaches for opti-
mizing the dissociation of rare or diseased tissues, are 
areas that require further development. Laser-capture 
microdissection8 provides a low-throughput way of 
isolating DNA from single cells in their native spatial 
context, but the quality of sequencing data derived from 
microdissected single cells has been relatively poor. 
Finally, microfluidic and bead-based methods have 
been developed to specifically enrich for single circu-
lating tumour cells (CTCs), as reviewed in detail else-
where9. Environmental microbial samples also require 
efficient lysis of bacteria, with requirements that can be 
highly variable between species10.

Once in suspension, several approaches have been 
developed to isolate single cells. These include meth-
ods that require manual manipulation, such as serial 
dilution11, micropipetting12, microwell dilution13 and 
optical tweezers14. In addition, several protocols have 
been developed to isolate intact cells or nuclei using 
fluorescence-activated cell sorting (FACS)15. Nuclear 
isolation has the advantage of enabling single-cell 
sequencing on frozen tissue, which has not yet been 
demonstrated with other methods16. For microbial 

samples, depending on the environmental source 
additional sample preparation and FACS setting con-
siderations can also be required17. Finally, automated 
micromanipulation methods that use droplets or micro-
mechanical valves in microfluidic devices are entering 
mainstream use18–20. Regardless of the method used, it 
is also important to accurately confirm that a single cell 
has been physically isolated so that spurious biological 
conclusions are not made after evaluating chambers that 
are empty or contain multiple cells. In the ideal case 
this can be accomplished by obtaining microscopy data 
from each chamber or well containing a single cell.

Various single-cell isolation technologies have 
recently been reviewed, where the trade-offs in accuracy, 
throughput, reproducibility and ease of use were high-
lighted9,21,22. Most of the studies using these technolo-
gies have been done to illustrate feasibility using a small 
number of cells. Addressing many of the fundamental 
biological questions that are uniquely approachable 
with single-cell genomics will require the interrogation 
of thousands of cells, making it more likely that tech-
nologies that are scalable through parallelization, such 
as microfluidic-based approaches, are adopted for the 
long term. In addition, identifying scalable methods for 
single-cell isolation is an area of active research that is 
likely to continue producing innovative new tools that 
will improve all the capture performance metrics.

Figure 1 | Opportunities enabled by single-cell sequencing strategies. Single-cell approaches provide 
higher-resolution views of the genomic content of samples by reducing the complexity of the genomic signal through 
the physical separation of cells or chromosomes. Shown in the centre of the figure are schematics of the different levels 
of cellular complexity analysed by approaches in microorganisms and multicellular eukaryotes. Extending outwards are 
simplified diagrams of data outputs from these approaches and examples of applications, for unicellular microorganisms 
(extending to the left) and multicellular eukaryotes (extending to the right). For microbial genomics, decreasing the 
number of organisms enables the detection of rare microorganisms in a sample. Single-cell sequencing allows for 
the assembly of the entire genomes of new microorganisms. Single-cell sequencing of multicellular organisms can reveal 
rare genetic variants and provide information on the co‑occurrence of mutations and evolutionary history of samples. 
Single chromosome sequencing allows for the phasing of variants across a genome.
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Whole-genome amplification. Another critical com-
ponent of obtaining genetic information from single 
cells is to amplify the single copy of a genome while 
minimizing the introduction of artefacts, such as ampli-
fication bias, genome loss, mutations and chimaeras. 
WGA has been an area with substantial progress over 

the past 10 years, which has been reviewed in detail 
elsewhere21 (FIG. 2). Briefly, the first group of methods 
that attempted to amplify entire human genomes from 
single cells coupled PCR amplification with either com-
mon sequences interspersed throughout the genome23, 
a common sequence ligated to sheared genomes24, 

Figure 2 | Overview of the three main whole-genome amplification 
methods. a | Pure PCR methods such as degenerate oligonucleotide 
primed PCR (DOP-PCR) use random priming followed by PCR amplification, 
which preferentially amplifies specific sites in the genome. This results in 
low physical coverage of the genome, but better uniformity of amplification. 
b | Isothermal methods such as multiple displacement amplification (MDA) 
use random priming followed by isothermal exponential amplification using 
a polymerase with high processivity and strand displacement activity. These 

methods can cover most of the genome, but have much less uniformity. 
c | Hybrid methods such as multiple annealing and looping based 
amplification cycles (MALBAC) and PicoPLEX have an initial isothermal 
preamplification, in which common sequences are added, followed by PCR 
amplification using those sequences. These methods have intermediate 
coverage and uniformity when compared with pure PCR and isothermal 
methods. d | Summary of false-positive, non-uniformity and false-negative 
rates for the three main classes of amplification as taken from REFS 29,34,35.
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The extent to which a genome 
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Allelic dropout
Loss of one allele of a locus 
that can occur during whole 
genome amplification.

or degenerate or random oligonucleotide priming25,26 
(FIG. 2a). In practice, these methods have resulted in 
loss of signal from the majority of the genome during 
the amplification owing to differences in the density 
of common sequences or variability in PCR efficiency 
between loci, which are exacerbated when starting with 
a single genome copy. Starting with two genome copies 
by sorting out tetraploid nuclei improves the recovery of 
the genome to about 10% using degenerate oligonucleo
tide primed PCR (DOP-PCR). However, it is unclear 
whether selection biases are introduced when selecting 
for rapidly dividing cells15. A recent modification of this 
method has extended the approach to diploid cells16. 
Of note, these methods use thermostable polymerases, 
which have higher error rates than thermolabile poly-
merases, resulting in more mutations introduced during 
the amplification process.

The second category of WGA is based on isothermal 
methods (FIG. 2b). The most commonly used approach 
is multiple displacement amplification (MDA), which 
uses isothermal random priming and extension with 
Φ29 polymerase, which has high processivity, a low error 
rate and strand displacement activity27,28. These meth-
ods produce greater genome coverage than the initial 
PCR-based methods, with lower error rates owing to 
the higher fidelity of Φ29 polymerase29. However, the 
exponential amplification results in overrepresentation 
of the loci that are amplified first, which is exacerbated 
by greater fold amplification29. It is unclear whether the 
overrepresentation of specific loci is due to stochastic 
or systematic biases. In addition, Φ29 polymerase activ-
ity results in the formation of a low level of chimeric 
sequence side products30,31, which can be reduced with 
endonuclease treatment allowing the physical separation 
of the amplicons by debranching the reaction32.

In an attempt to overcome the low coverage of PCR-
based methods and lack of uniformity of isothermal 
approaches, two quite similar hybrid methods have been 
developed. Both of these methods use a limited isother-
mal amplification followed by PCR amplification of 
the amplicons generated during the isothermal step12,33 
(FIG. 2c). As the name implies, ‘displacement DOP-PCR’ 
(also known as PicoPLEX) uses degenerate primers in 
the first step to add a common sequence, followed by 
priming of the common sequence for subsequent PCR 
amplification33. Most recently, multiple annealing and 
looping-based amplification cycles (MALBAC) uses a 
similar protocol, with the exception of using random 
primers, as well as new common sequences and tem-
perature cycling that are claimed to promote looping 
of the isothermal amplicons to inhibit further amplifi-
cation before the PCR step, which may result in more 
uniform amplification12.

In practice, the most commonly used WGA meth-
ods in current single-cell studies are the isothermal and 
hybrid methods. We recently compared these methods 
using serial dilutions of Escherichia coli DNA, as well 
as single bacterial cells29. Both MDA and MALBAC 
could successfully amplify genomes from single cells, 
but when amplification was carried out in microlitre 
reaction volumes in tubes, a significant amount of 

extraneous contaminant DNA was also amplified. This 
contaminant DNA was largely eliminated by moving to 
a microfluidic format that used nanolitre volumes. Bias 
in amplification was different between the two meth-
ods; for MDA bias depended strongly on the amount of 
gain, whereas for MALBAC it was largely independent 
of gain. MDA and MALBAC had roughly similar bias 
when the MDA gain was limited by nanolitre volumes 
in microfluidic devices. In addition, MALBAC was bet-
ter at measuring copy number variation but MDA had 
a significantly lower false-positive rate. These findings 
suggest that the amplification method should be care-
fully chosen for each experiment based on the type of 
genetic variation that will be interrogated.

Two recent reports looked at similar performance 
metrics in human cells. Both reports compared DOP-
PCR, MDA and MALBAC34,35. The first report34 found 
that MDA had better coverage than MALBAC (84% 
versus 52%), which resulted in higher detection rates 
of single nucleotide variants (SNVs; 88% versus 52%). 
However, MALBAC and DOP-PCR had more uniform 
coverage, resulting in greater sensitivity and specifi
city for the detection of copy number variants (CNVs) 
of >1 Mb. Interestingly, some cells amplified by MDA 
had comparable CNV detection rates to MALBAC 
and DOP-PCR; it is unclear what variables result in 
the lack of reproducible MDA uniformity. The second 
report35 also found that MDA had greater coverage 
breadth (84%) than MALBAC (72%) and DOP-PCR 
(39%), with MALBAC and DOP-PCR having greater 
uniformity (coefficient of variation 0.10 versus 0.14, 
respectively) than MDA (coefficient of variation 0.21). 
In addition, they found that the isothermal methods had 
lower false-positive rates, but with more false-negative 
variance between experiments. The authors note that 
MALBAC had a lower allelic dropout (ADO) rate than 
MDA, although MALBAC only covered 72% of the 
genome, so the ADO rate of 21% was probably calculated 
only using covered sites. Consequently, it is unclear from 
this analysis which method had a lower false-negative 
rate, as MDA covered more of the genome but lost more 
variant alleles at heterozygous sites owing to less uni-
form amplification. These studies largely confirm our 
conclusion from the study of single bacterial genomes 
that there is no clear winner in amplifier performance 
and that each approach has strengths depending on the 
metric of interest (FIG. 2d).

Previous reports had also shown a significant 
decrease in contamination when single-cell WGA was 
performed in a microfluidic device36. In addition, it 
has been shown that using nanolitre volumes of micro-
fluidics devices results in more uniform MDA when 
compared to traditional microlitre reactions31. A micro-
fluidic device has recently been developed to perform 
MALBAC37, but it is unclear whether the performance 
of MALBAC will be further improved by carrying 
out the reactions in enclosed nanolitre amplification 
chambers. A recent study that used nanolitre volumes 
in microwells for MDA WGA (in a technique termed 
microwell displacement amplification system (MIDAS)) 
claimed to further improve amplification uniformity 
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and reported single-cell amplification with equivalent 
uniformity to bulk MDA amplification; this level of 
performance would be striking and awaits independent 
confirmation13. Performing single-cell MDA in micro-
fluidic emulsions seems to markedly improve the uni-
formity of amplification, and multiple groups have had 
success with this approach38,39.

Interrogation of WGA products. The next step in single-
cell genomic analyses is to determine how the ampli-
fied genomes will be interrogated. Broadly speaking, 
for complex eukaryotic genomes such as the human 
genome, one can choose to query specific loci of inter-
est (typically <1 Mb), sequence all of the protein-coding 
regions (the exome; 30–60 Mb) or sequence the entire 

genome (3 Gb). As seen in BOX 1 and TABLE 1, each of 
these approaches has trade-offs in coverage, propensity 
for specific types of errors and cost per cell evaluated. 
The type of genomic interrogation also needs to be care-
fully considered in the context of the questions being 
addressed by the study, by taking the biases of the WGA 
method into account.

Targeting specific locations of the genomes of single 
cells can help to focus on areas that have the greatest 
biological contribution to the system being studied while 
reducing sequencing costs and false mutation discover-
ies. Smaller target regions are less likely to contain errors 
that were introduced during the first few rounds of 
WGA that would be propagated to result in the errone-
ous identification of a genetic variant (known as a false-
positive variant call). Furthermore, using the bulk sample 
as a reference can reduce false-positive variant calls by 
requiring concordance of variant calls in the bulk and 
single cells, although this limits the mutation discovery 
space to variants identified in the bulk sample. Targeting 
can be mediated by target-specific amplification using 
PCR, or target capture through hybridization. Target-
specific amplification provides more uniform target cov-
erage than capture-based methods, which is important 
when trying to maximize coverage of a genome that has 
already undergone non-uniform amplification40. Target 
capture more easily provides greater coverage breadth41, 
although parallel target-specific amplification using 
microfluidic devices can significantly increase coverage 
without large increases in effort.

Single-cell exome sequencing allows broader genome 
interrogation, which can be used to identify variants that 
are unique to each of the cells. However, as the size of 
the genome region interrogated increases, the probabil-
ity that false variants will be discovered also increases 
— especially when using polymerases with higher error 
rates with the PCR-based WGA methods (C.G. and 
S.R.Q., unpublished observations).

The entire genomes of single cells can also be interro-
gated. Again, this comes with the trade-off of increased 
false mutation discovery and cost with the ability to 
query a larger proportion of the genome. Whole-genome 
sequencing (WGS) of single cells also removes the addi-
tional decrease in uniformity that occurs as a result of 
targeted or exome capture; thus, WGS can facilitate the 
detection of SNVs and CNVs. In addition, WGS can cata
logue non-coding and structural variants that may con-
tribute to the biological system being studied. However, 
this comes at a cost of requiring roughly 30‑fold more 
sequencing per cell relative to exome sequencing, which 
may become limiting if working with many cells.

Overview of single-cell sequencing errors. One of the 
major challenges of analysing single-cell genomics 
data is to develop tools that differentiate technical arte-
facts and noise introduced during single-cell isolation, 
WGA and genome interrogation from true biological 
variation. During single-cell isolation, the population of 
cells being interrogated can be biased through selection 
of cells based on size, viability or propensity to enter 
the cell cycle. Consequently, it is necessary to compare 

Box 1 | Cost considerations when designing single-cell sequencing experiments

Single-cell genome sequencing can provide new insights into heterogeneous human 
tissue samples. However, owing to the large genome size compared with microorganisms, 
costs need to be carefully considered. To ensure adequate and appropriate data are 
generated to address the hypotheses of the study, the balance between the number of 
cells sequenced and breadth of the genome of each cell that will be queried needs to be 
taken into account when designing an experiment. A comparison of total bases 
sequenced as an estimate of sequencing costs and number of cells interrogated (those 
cells that passed quality control criteria) are highlighted for several recent sequencing 
studies (see the figure). As noted, there are some general strategies that have been 
undertaken. The first is to sequence a large portion of the genome of a small number of 
cells. This approach would be necessary for studies that want to identify variants in 
non-coding regions. A second approach is to limit sequencing to the exome, which allows 
increasing cell numbers for performing de novo mutation detection. The final strategy is 
to limit the genomic space queried so that large numbers of cells can be queried. This 
method could be used to segregate mutations and determine clonal structures using 
mutations first detected in a bulk sample. Some have used combinations of low and high 
sequencing depth where low-pass sequencing of a larger number of cells is used for 
specific hypotheses while sequencing larger portions of the genomes of a smaller 
number of cells addresses complementary questions from the same samples.
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the variant alleles detected in the single cells to the bulk 
population to ensure there was no selection bias. This 
can be done by comparing the percentage of single 
cells with a variant to the variant allele frequency in the 
original bulk sample40.

As detailed in FIG. 3, numerous errors are introduced 
during WGA, including loss of coverage, decreased cov-
erage uniformity, allelic imbalance, ADO and errors 
during genome amplification. Most published papers 
have attempted to quantify rates for some or all of these 

Table 1 | Overview of technical aspects of major single-cell cancer sequencing studies
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Somatic variants
Changes in the genome of an 
organism that are not present 
in germ cells and can thus not 
be passed on to offspring.

errors. However, many studies use cell lines to carry 
out quality control analyses, followed by experiments 
on primary samples. This makes it difficult to compare 
protocols between studies, as it is unclear whether simi
lar performance can be obtained on the primary sam-
ples for each of these studies relative to the cell lines that 
were used for protocol optimization. One must be par-
ticularly mindful that certain cell lines or cell types may 
not be diploid; they can be highly aneuploid or even 
polyploid, and this affects experimental performance 
enormously. In addition, various metrics are applied 
in a quality control step in which the cells are catego-
rized into a subset that meets the chosen criteria and 
are used to draw biological conclusions, versus a sub-
set that is discarded. Some of the quality metrics used 
include visual confirmation of an individually isolated 
cell, WGA product qualification and/or quantification, 
genome coverage and ADO. Two recent studies devel-
oped methods to predict the breadth of genome cov-
erage using low-pass sequencing, which could provide 
a low-cost approach for assessing cell lysate quality in 
larger eukaryotic genomes42,43. However, comparing 
single-cell genomics studies is currently difficult, as 
most studies do not report the total number of cells 
evaluated, the quality of the data from the discarded cells 
or the metrics used for the quality control categorization 
(TABLE 1). Finally, the definition of ADO is not uniform 
across studies. Some studies do not include loci where 
both alleles have dropped out of the single cells in their 
ADO calculation, which artificially reduces those ADO 
values relative to those studies that include all loci. In 
practice, the determination of clonal structures is ham-
pered by loss of somatic variants, which occurs always 
when the locus drops out and occurs about 50% of the 
time when one of the alleles drops out. A less ambigu-
ous term is ‘false-negative rate’, which would take into 

account both allelic and locus dropout. An additional 
consideration for microorganism sequencing is changes 
in lysis and/or amplification efficiency between species 
owing to cellular or genome differences. A recent study 
compared errors and assembly performance between 
species44. Hence, more uniform analysis and report-
ing methods are needed to facilitate data interpreta-
tion between single-cell studies and provide accurate 
performance metrics for each approach.

Single-cell variant calling. Although numerous errors 
are introduced during WGA, tools and strategies are 
now being developed to overcome the additional tech-
nical noise created with WGA, allowing the identifica-
tion of true variation. SNV calling requires coverage 
of a variant allele at a rate that exceeds the sum of the 
amplification and sequencing error rates. More specifi-
cally, mutations introduced during the amplification, as 
well as the allelic imbalances that occur during genome 
amplification, must be taken into account when call-
ing variants (FIG. 4). There are two basic strategies to 
overcome the false-positive variants introduced as arte-
facts of the amplification. First, the bulk sample can be 
used as a reference to reduce the false discovery rate40. 
Second, when using only the single-cell data, two or 
three cells can be required to have the same variant at 
the same location, which is unlikely to occur by chance 
with the several thousand mutations introduced during 
single-cell WGA in a 3 Gb human genome12. However, 
the actual number of cells required to call a mutation 
has not yet been rigorously tested based on the size of 
the genomic region interrogated. To overcome allelic 
imbalance, we need variant calling algorithms that are 
designed to take the technical noise into consideration. 
One strategy is to require that all variant calls be above 
the level of technical noise in control samples, which 

Table 1 (cont.) | Overview of technical aspects of major single-cell cancer sequencing studies
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Papers using qPCR to detect CNV/SNV

Potter et al. 
2013 Genome 
Research109

FACS Target-specific 
amplification 
for SNV and 
CNV

2 515 515 7 loci * * * NA

Papaemmanuil 
et al. 2014 
Nature 
Genetics110

FACS Target-specific 
amplification 
for SNV and 
CNV

2 269 269 6 loci * * * NA

Various strategies for combining methods for isolating cells, amplifying their genomes and interrogating the amplification products have been used to begin to obtain 
insights into cancer biology. A comparison of these strategies is presented, along with their associated false-positive and false-negative rates. The choice of methods 
used needs careful consideration to ensure that sufficient cells are analysed and that error rates are low enough to address the hypotheses. CNV, copy number variant; 
CTC, circulating tumour cell; DOP-PCR, degenerate oligonucleotide primed PCR; FACS, fluorescence-activated cell sorting; MALBAC, multiple annealing and 
looping-based amplification cycles; MDA, multiple displacement amplification; NA, not applicable; QC, quality control check; qPCR, quantitative PCR; SNV, single 
nucleotide variant; WES, whole-exome sequencing. *Data not presented in study. ‡Data not stated in text of studies but were estimated by plots of coverage or allele 
dropout. §Data taken from primary cells. ||Data produced with cell lines. ¶False-negative rate estimated as 1-(Coverage+0.5(allele dropout)).

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 17 | MARCH 2016 | 181

© 2016 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Genetics

b  Magnitude of deleterious effects of specific genome amplification errors on single-cell applications
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Molecular barcoding
Attaching a unique sequence 
to each molecule as a strategy 
to more accurately count 
nucleic acids by correcting for 
experimental artefacts. This 
approach is also used to 
decrease false-positive 
mutation call rates due to 
sequencing errors by creating 
a consensus genotype for 
each molecule.

should not have variants40. Another approach is to 
decrease the sequencing error rate by using molecular 
barcoding7. Finally, algorithms are beginning to be 
developed to correct errors in single-cell sequencing 
data45. Nonetheless, more tools that incorporate all 
single-cell amplification errors are needed to optimally 
carry out variant calling in single-cell data.

CNV detection relies on algorithms such as hidden 
Markov models, circular binary segmentation and rank 
segmentation, which can normalize noisy coverage 
data after single-cell WGA to identify regions that are 
over- or under-represented compared with a diploid 
genome12,46,47. CNV detection algorithms are currently 
being developed to specifically address the technical 
artefacts introduced during specific types of single-cell 
WGA47,48. Chimaera formation can create false structural 
variants, although unless they occur at the beginning of 
the amplification they should be much less abundant 
than the corresponding wild-type sequences. This is 
important for both identifying structural variation in 
sequencing data and when constructing contigs for 

de novo genome assemblies. In addition, assemblies 
are hampered by loss of coverage and uneven coverage, 
which results in truncated or artefactual sequences in 
assembled genomes. Several assemblers have been cre-
ated to specifically address these challenges49,50, and 
it is likely that further progress will be made in the 
coming years.

Determining genetic relationships between single cells. 
General strategies for clustering gene expression and 
other large data sets have depended heavily on distance 
functions that provide a quantitative measurement of 
the differences between pairs of samples51. Within the 
context of single-cell sequencing, we require that these 
distance functions be robust to missing data as a result 
of false-negative variant detection. We have found that 
Jaccard distance is best suited for genotype data, as 
it is binary in nature52. However, we also observed 
that in general the false-negative rate can hinder 
statistical determination of the number of clones in  
a sample.

Figure 3 | Effects of various error types on specific single-cell sequencing applications. a | De novo assembly of genomes 
(left) is hampered by gaps that are due to loss of coverage and incorporation of amplification artefacts into contigs. Copy 
number variant (CNV) detection (middle) requires amplification to be sufficiently uniform so that amplification noise can be 
differentiated from true variants. Single nucleotide variant (SNV) detection (right) requires coverage to detect the variants 
while not detecting false-positive variant calls that are introduced by the amplification or sequencing. b | Summary of the 
effects that various amplification artefacts have on specific applications, as taken from REFS 29,34,35.
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is concordant with bulk
sample, require that two 
or more cells have a
concordant mutation call

An alternative to distance-based methods is to 
perform model-based clustering53, which allows the 
inclusion of false-negative errors modelled as binomial 
processes. Model-based clustering is a soft clustering 
approach. Unlike methods that subdivide phylogenetic 
trees that have been generated by distance-based clus-
tering, model-based clustering provides probabilities 
that a cell originates from the different clones. As seen 
in the example in FIG. 5, the observed single-cell data are 

represented as a binary matrix that is first considered 
to be derived from a mixture of an unknown number 
of clones with some data missing. Parameters in the 
model, such as the probability of a particular single cell 
originating from a specific clone, as well as the false-
negative rate, can be estimated across a distinct number 
of possible clones using an expectation–maximization 
(EM) algorithm54. The challenge of determining the 
number of clones is then reduced to selecting the statis-
tical model that best describes the observed single-cell 
data using Bayesian or Akaike information criteria55. 
There is also a hybrid approach based on obtaining an 
initial estimate of the number of clones derived from 
distance-based hierarchical clustering, which increases 
the convergence speed of the computationally intensive 
model-based methods56.

After estimating the number of clones in a sample 
and determining which clone each cell belongs to, a 
consensus clonal mutation profile can be established. 
We have done this using mutation frequency cutoff 
values that exceed the false-negative rate57, although 
more rigorous statistical methods could be developed. 
After determining the clonal genotype, the relationships 
between clones can be determined. There are a num-
ber of algorithms used in evolutionary biology that can 
be applied to establish clonal structures58, such as those 
based on maximum parsimony, maximum likelihood or 
distance-based methods such as unweighted pair group 
method with arithmetic mean, neighbour joining and 
minimum evolution algorithms58,59. We prefer the modi-
fied use of directed minimum spanning trees, as they can 
be rooted and allow us to readily include ancestral clones 
as internal nodes of the evolutionary tree are identified.

Applications
Compartmentalizing microbial dark matter. Sequencing 
has the capacity to overcome the sampling bias that 
occurs when investigators rely on culturing methods 
to isolate microorganisms. Sequencing 16S ribosomal 
RNA has identified as-yet unculturable bacterial phyla 
and major archaeal groups, although the remainder of 
the genomes of those putative new phyla are difficult to 
assemble because the sequencing data are acquired from 
samples that are composed of multiple species. In prin-
ciple, single-cell genomics has the potential to assemble 
the genomes of species that are present at low frequen-
cies in these metagenomic samples4, as well as to produce 
assemblies of genomes of completely uncharacterized 
microorganisms. Here, we focus on the sequencing of 
species of phyla that had been detected by 16S ribosomal 
RNA sequencing but had not had full genome assem-
blies, as these single-cell studies have shown the greatest 
likelihood of advancing our understanding of microbial 
ecosystems in the near term.

The first single-cell genome to be sequenced from the 
environment was a member of the TM7 phylum. In this 
study, species were identified from the mouths of human 
subjects, followed by physical isolation and MDA using 
a microfluidic device5. In a later study, cells were sorted 
using FACS, followed by MDA and sequencing60. More 
recently, species from the OP11 phylum isolated from an 

Figure 4 | Overcoming amplification artefacts when identifying SNVs in single-cell 
data. Loss of an allele or entire locus, as well as biases in amplification of each allele at a 
single location, can result in false-negative single-nucleotide variant (SNV) calls. These 
errors can be overcome biochemically by improving the performance of the amplification, 
as well as through computational methods that use many cells to identify the missing data. 
Errors introduced early in whole-genome amplification (WGA) can cause false-positive 
SNV discovery, which can be overcome by requiring that the variant call from one cell be 
identified in additional cells or from a bulk sample from which it was derived.
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anoxic spring61, SR‑1 phylum derived from human oral 
mucosa62, TM6 phylum from biofilm on a hospital sink63 
and OP9 phylum from a hot spring64 have been sequenced 
using similar methods. The Joint Genome Institute has 
undertaken a project to sequence the genomes of hun-
dreds of unculturable microorganisms from diverse 
environments, and has already sequenced the genomes 
of numerous archaeal and bacterial species of known but 
unsequenced phyla65. This large sequencing study has also 
identified new biological phenomena in these bacteria, 
including a new purine synthesis pathway65.

The most important variable when performing 
de novo genome assemblies is the genome coverage. 
Almost all studies to date have used MDA. In our com-
parison study using raw reads from single E. coli cells, 
MDA performed better than MALBAC29. Much of the 
genome coverage for MALBAC was lost owing to con-
tamination when the reaction was carried out in tubes. 
If only mapped reads are considered, MALBAC would 
cover a greater proportion of the genome, providing 
further evidence that reducing contamination using a 
microfluidic-based MALBAC strategy could potentially 
provide even better microbial genome assemblies. Tools 
have recently been developed to systematically assess the 
quality of single-cell microorganism sequencing data66, 
including the presence of a contaminating sequence67. 
Another approach for improving amplification metrics 
and subsequent assemblies is to capture and culture 
individual bacteria in droplets, followed by amplification 
of the hundreds to thousands of cells that descended from 
the original bacteria68. Alternatively, investigators have 
focused on species with polyploid genomes to acquire 
better assemblies by starting with bacteria that have 200–
900 genome copies per cell69. Finally, there have been sev-
eral short-read assemblers that have been developed to 
correct for the artefacts of single-cell MDA49,50,70.

Recent advances in single-cell genomics have enabled 
the description of completely new phyla, and are now 
beginning to provide biological insights that could not 
be made using metagenomics approaches62. In addition, 
a better understanding of the microbiome is creating 
knowledge that is leading to commercial applications. 
For example, new members of the Oceanospiralles order, 
the genomes of which contain enzymes that metabolize 
crude oil, were identified by single-cell sequencing of 
ocean samples after the Deepwater Horizon oil spill71. 
There is also promise in using single-cell genomics to 
identify unculturable human microbial pathogens, 
as well as to determine differences in pathogenicity 
between strains of the same species within an individ-
ual72. In addition, although most studies have focused on 
bacterial phyla with known 16S rRNA gene sequences, 
single-cell genomics could be used to assemble the 
genomes of bacteria or archaea that can be visualized, 
but the rRNA of which cannot be detected by PCR 
because of sequence divergence from the universal 
amplification primers.

An emerging application of single-cell genomics is 
to use single-cell sequencing to identify new viruses 
that may be difficult to assemble from metagenomic 
samples73. Several papers have highlighted the power of 
this approach, including the discovery of five new virus 
genera through single-cell interrogations of uncultur
able SUP05 bacteria74. Another study found the first 
viral sequences for 13 new bacterial phyla using public 
data sets75. Computational tools are being developed to 
improve methods for deciphering new viral sequences 
from their host76. These methods are beginning to 
be used to study phage–host interactions, which will 
probably be augmented with single-cell transcriptome 
sequencing. Another study has looked at virus–protist 
interactions using single-cell sequencing77, and it is 

Figure 5 | Overview of methods used for determining the clonal structure of cancer 
samples despite missing data owing to false-negative variant detection. After 
initiation, tumours progress through a process of mutation acquisition that results in 
clonal expansions and extinctions over time. When patients present with clinical disease, 
their tumours can be sampled to determine the clonal structure at that time using 
single-cell genome sequencing. However, determination of the true clonal structure is 
hampered by false-negative variant calls, which can be overcome by either probabilistic 
modelling or by distance-based clustering methods. Figure from REF. 119, Nature 
Publishing Group.
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likely that additional studies will provide details on 
the relationship between a virus, phage or bacterium 
and its host by deconvoluting the cell‑to‑cell variance 
in that interaction which is partially lost with bulk 
sequencing strategies.

Still, several challenges remain to increase the 
throughput and quality of single-cell microbial genomes. 
More efficient tools for isolating and lysing single micro-
organisms, uniform and less error-prone amplification 
methods, and even more robust assembly algorithms 
that incorporate the additional uncertainty introduced 
by technical artefacts during single-cell WGA are needed 
to produce high-quality genome assemblies. The chal-
lenge of providing a more uniform approach for produ
cing, analysing and assessing single-cell microorganism 
genomes is being addressed by the Human Microbiome 
Project78, which is in the process of sequencing the 
genomes of 3,000 single cultured and uncultured bac-
teria isolated from various human anatomical sites. We 
have largely focused on single bacterial genomes, but 
investigators are also interrogating the genomes of other 
single-cell organisms, including protists77,79.

Identifying genetic mosaicism in multicellular organ-
isms. The development of cytogenetic methods in the 
1950s led to the discovery that cells within the same indi-
vidual can harbour different numbers of chromosomes80. 
Patients with mosaic expression of dominant Mendelian 
diseases were subsequently identified by unusual pat-
terns of the stereotypical cutaneous manifestations of 
several diseases, including neurofibromatosis type I and 
hereditary haemorrhagic telangiectasia81. It was then 
shown that other diseases such as McCune–Albright 
Syndrome are only expressed as mosaic diseases, sug-
gesting that germline mutations are lethal82. More 
recently, the development of variant detection methods 
based on microarrays and next-generation sequencing 
has enabled the identification of several new diseases 
that are the result of mosaic SNVs83–85 or CNVs86.

However, previous studies of human mosaicism have 
been limited to the identification of genetic aberrations 
that are present at relatively high frequencies owing to 
the low sensitivity of current technologies. Still, a human 
cell is estimated to acquire an SNV within its coding 
region after every 300 cell divisions87. As the average 
human body is estimated to contain 37 trillion cells88, 
each position in our genomes acquires hundreds to 
thousands of mutations in different cells as we develop 
from a zygote into an adult human. In addition, stud-
ies that have sampled tissues from different sites of the 
same person suggest that mosaic CNV and SNV rates 
are higher than previously appreciated89,90. However, 
the role of that low-level genetic variation in the predis-
position and pathogenesis of human diseases remains 
largely unexplored.

Recent studies have started characterizing mosaic 
genetic variation in human samples using single-cell 
sequencing. For example, the de novo mutation rate and 
recombination map were measured in single human 
sperm91, followed by a second study on sperm recom-
bination rates92 and a later study on human oocytes93. 

It has also been shown that a substantial percentage 
of single human neurons from healthy individuals 
harbour megabase CNVs6,94, although these findings 
have been disputed95. More recently, single-cell whole-
genome sequencing was used to identify mosaic SNVs 
whereby the authors found an enrichment in mutations 
at sites that are actively transcribed in the brain, sug-
gesting those locations are the main source of mutation 
in those cells96. We have also used single-cell sequen
cing to confirm a mosaic SNV in the sodium channel 
SCN5A as a cause of long‑QT syndrome in a neonate 
(Euan Ashley, James Priest, C.G. and S.R.Q., unpub-
lished observations). It is likely that low-level mosaic 
genetic variants will be increasingly connected with 
human diseases as the experimental and analytical tools 
continue to reduce the technical noise from single-cell 
WGA, which will contribute to improvements in our 
ability to decipher the true variants from experimental 
artefacts. In addition, these tools are likely to find direct 
clinical applications. Single-cell genomic techniques 
have long been used to screen embryos for in vitro fertili-
zation97 and more recently they have been used to detect 
aneuploidy in polar bodies before implantation93,98,99.

Cancer. The best studied example of genetic mosaicism 
is cancer. Tumour initiation, maintenance and evolution 
are mediated by the sequential acquisition of genetic 
variants in single cells. The aim of the large ongoing can-
cer sequencing projects is to catalogue those variants to 
better understand tumour biology100. However, like other 
studies of genetic mosaicism, the sensitivity of detection 
is limited to variants that are present in about 20% of 
cells of a bulk sample composed of thousands of cells. 
The use of variant allele frequency distributions in bulk 
and regional sequencing studies has indicated that many 
cancers have considerable genetic heterogeneity101,102. 
However, those methods do not co‑segregate mutations 
into distinct clones, which is required to unambig
uously determine the clonal structure of the samples, 
as well as to determine the evolutionary histories of 
the malignancies.

Single-cell sequencing studies have now begun to 
dissect intra-tumour genetic heterogeneity at single-cell 
resolution. The first published study used DOP-PCR to 
identify CNVs in breast cancer nuclei15. Another group 
used isothermal amplification methods to identify SNVs 
in a renal cell tumour, and in a sample from a patient 
with a myeloproliferative disorder103,104. The authors 
of those two studies concluded that the tumours were 
monoclonal even though there was significant genetic 
heterogeneity identified between cells. Another study 
did identify two distinct clonal populations within a 
bladder carcinoma105. A subsequent single-cell sequen
cing study of colon cancer claimed that the tumour was 
biclonal in origin, which seems to be contradicted by 
the fact that the two putative unrelated clones share 
mutations106. The use of ambiguous descriptions of the 
clonal structures in these studies highlights the need to 
create common nomenclature as the field of single-cell 
cancer genomics matures. These initial studies provided 
hope that single-cell cancer sequencing would become 
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feasible, but uncertainty of data quality owing to techni-
cal limitations prevented the investigators from making 
new biological insights.

Circulating tumour cells (CTCs) can be isolated and 
interrogated as a potential window into the genetics of 
a tumour through non-invasive sampling. The unique 
technical challenges associated with isolating and ana-
lysing the genomes of single CTCs have been detailed 
elsewhere9. Still, these studies have begun to show prom-
ise in identifying and characterizing CTCs as alternative 
diagnostic and disease monitoring strategies107,108. One 
of the fundamental questions that is yet to be resolved is 
whether CTCs will provide a representative sampling of 
the genomic diversity within the source tumour.

More recent studies have aimed to improve experi
mental and computational methods so that examina-
tions of malignancies at single-cell resolution provide 
a higher-resolution understanding of the disease. Some 
are limited by evaluating an inadequate number of loci 
or have insufficient genome coverage to independently 
determine clonal structures based only on the single-cell 
sequencing data41,109,110. However, by sorting out haemato-
poietic precursor populations, one study of acute myeloid 
leukaemia was able to order the acquisition of mutations 
and provide evidence that specific mutations persisted 
in populations that have a phenotype similar to normal 
haematopoietic stem cells111. A more recent breast cancer 
study that used MDA on tetraploid nuclei inferred the 
clonal structure of the sample using SNVs7. The authors 
also did CNV profiling, although not on the same cells, 
and found that most CNVs were acquired before SNVs.

We recently used MDA to amplify the genomes of 
almost 1,500 acute lymphoblastic leukaemia cells40. 
With the large number of cells, we were able to develop 
methods to determine the clonal structures. In addi-
tion, we established general criteria that are required to 
accurately identify clonal structures, including: having 
a variant dropout rate of less than 30%, interrogating at 
least 20 mutations per sample and detecting at least three 
independent cells to accurately identify a new clone. The 
vigorous validation of our clonal structures using these 
analysis methods enabled us to confidently make new 
conclusions about the events that result in ALL forma-
tion, including the presence of co‑dominant clones at 
diagnosis, the acquisition of clone-specific punctuated 
cytosine mutagenesis, the existence of leukaemia cells 
at various stages in differentiation arrest and the obser-
vation that KRAS mutations are acquired late in disease 
development but are not sufficient for clonal dominance.

Future directions in cancer research
With recent experimental and computational devel-
opments, the field of single-cell genomics is poised 
to begin offering important new insights into cancer 
development and evolution. Currently, only SNVs or 
CNVs can be accurately identified from a single cell 

with targeted or low-pass sequencing; improvements 
in WGA methods could further decrease sequencing 
requirements, which would allow more cost-effective 
whole-genome interrogation of all genomic variation 
in single cells, including SNVs and structural vari-
ants that reside in non-coding regions. The strategies 
used to interrogate amplified cancer genomes, such as 
WGS, whole-exome sequencing or targeted sequencing, 
should be carefully selected based on the hypotheses 
being tested, as well as the trade-offs between cost, 
throughput and the quality of the data acquired (BOX 1). 
Further computational method development is needed 
to maximize the accuracy of variant calling, as well 
as the clonal structures identified. Finally, more uni-
form definitions across cancer sequencing studies are 
required to allow accurate comparisons between stud-
ies. For example, cell lines should not be used to evaluate 
the quality of methods that are performed on primary 
cells, and unambiguous terms such as false-negative 
rate, which incorporate both the locus dropout and 
ADO, should be substituted for ADO, and a universal 
definition for a clone should be determined. The latter 
point is important, as more sensitive single-cell meth-
ods are beginning to identify variants that are unique 
to individual cells or small groups of cells (C.G. and 
S.R.Q., unpublished observations), and there is no con-
sensus with regard to whether those likely incidental 
rare mutations should be used to establish those cells as 
an independent clonal population.

Conclusions
In this Review, we have presented an overview of the cur-
rent state of the field of single-cell genome sequencing. 
Substantial progress has been made over recent years 
in obtaining higher quality single-cell data, which has 
resulted in the discovery of new biological phenomena 
that could not be detected with standard bulk genomic 
interrogations. Still, many challenges remain. Increases 
in the throughput of cell isolation techniques, as well 
as improvements in genome amplification, sequencing 
and computational methods will undoubtedly make the 
field accessible to many more groups while broadening 
the types of hypotheses that can be tested. In addition, 
single-cell genome sequencing has begun to be coupled 
with RNA112–114 and/or protein measurements115 from 
the same cells. The ability to correlate genotype with 
other cellular building blocks, as well as phenotypic 
measurements, will make even more biological ques-
tions accessible. Finally, incorporating intracellular116 
and intercellular117,118 spatial information with genomic 
measurements will enable researchers to begin putting 
the cellular building blocks together by providing the 
surrounding cellular contexts. Many obstacles remain, 
but we believe the field of single-cell genomics is going to 
rapidly advance our understanding of microbial ecology, 
evolution and human disease.
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