

Instituto de Matemática e Estatística Universidade Federal de Goiás

Coordenação da Monitoria

Câmpus Samambaia, Goiânia-GO +55 62 3521-1208 - http://www.mat.ufg.br

Processo Seletivo, Monitoria

Data:	21/03/2014
Unidade Acadêmico:	Instituto de Matemática e Estatística
Curso:	Matemática
Disciplina:	Equações Diferenciais Ordinárias

1. 2 pts. Para funções, p(t) e q(t), contínuas num intervalo $I \subset \mathbb{R}$, considere a equação diferencial de 1^a ordem:

$$(*): \frac{dx}{dt} + p(t)x = q(t), \quad t \in I,$$

Denote com P(t) a primitiva: $P(t) = \int p(t)dt$.

(a) Demostre que (*) é equivalente à:

$$x(t) = e^{-P(t)} \left[\int e^{P(t)} q(t) dt + c \right], \quad t \in I,$$

Sugestão: Multiplique (*) por $e^{P(t)}$.

(b) Resolva a equação diferencial:

$$t\frac{dx}{dt} - 2x = t^5, \quad t > 0$$

2. 2 pts. Encontrar a solução completa das equações diferenciais:

(a)

$$\frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} + \frac{dx}{dt} - x = e^{-t}\cos t,$$

(b)

$$\frac{d^2x}{dt^2} + 4x = \sin 2t, \quad t \in \mathbb{R}.$$

- 3. 2 pts. Define, desenhe e discurse sobre:
 - (a) Existência e unicidade para equações diferenciais de primeira ordem:

$$\frac{dx}{dt} = f(t,x), \quad (t,x) \in \Omega \subset \mathbb{R}^2.$$

(b) Existência e unicidade para equações diferenciais de primeira ordem:

$$\frac{d^2x}{dt^2} = f\left(t, x, \frac{dx}{dt}\right), \quad \left(t, x, \frac{dx}{dt}\right) \in \Omega \subset \mathbb{R}^3.$$

Em ambos os casos a função f e todas suas derivadas parciais são contínuas no conjunto aberta, Ω .

4. 2 pts. Para funções, p_1 e p_0 , contínuas num intervalo, $I \subset \mathbb{R}$, consideramos a equação diferencial homogênea:

$$(0): \frac{d^2x}{dt^2} + p_1(t)\frac{dx}{dt} + p_0(t)x = 0, t \in I.$$

Vale o seguinte resultado: Se $\varphi_1(t)$ é uma solução da equação homogênea, uma solução da equação homogênea linearmente independente com $\varphi_1(t)$, é dado por:

$$\varphi_2(t) = \varphi_1(t) \int \frac{1}{\varphi_1(t)^2} e^{-\int p_1(t)dt} dt$$

(a) Encontre uma solução da forma $\varphi_1(t)=at+b$, para a equação diferencial:

$$(1+t^2)\frac{d^2x}{dt^2} + 2t\frac{dx}{dt} - 2x = 0, \quad t \in \mathbb{R},$$

Instituto de Matemática e Estatística Universidade Federal de Goiás

Coordenação da Monitoria

Câmpus Samambaia, Goiânia-GO +55 62 3521-1208 - http://www.mat.ufg.br

(b) Demostre, que uma solução linearmente independente com $\varphi_1(t)$ é dado por:

$$\varphi_2(t) = -1 - t \arctan t$$
,

5. 2 pts. Com as denotações usadas no item anterior, considere-se e equação inhomogênea¹:

$$(I): \frac{d^2x}{dt^2} + p_1(t)\frac{dx}{dt} + p_0(t)x = q(t), t \in I,$$

Vale o resultado: se $\varphi_1(t)$ e $\varphi_2(t)$ são soluções da equação homogênea, (0), uma solução particular da equação (I), é dado por:

$$\varphi_0(t) = \varphi_2(t) \int \frac{\varphi_1(t)q(t)}{W(t)} dt - \varphi_1(t) \int \frac{\varphi_2(t)q(t)}{W(t)} dt,$$

aqui, W(t) é o Wronskiano:

$$W(t) = \left| \begin{array}{cc} \varphi_1(t) & \varphi_2(t) \\ \varphi_1'(t) & \varphi_2'(t) \end{array} \right|$$

(a) Demostrar que $\varphi_1(t)=e^t$ é solução da equação homogênea:

$$t\frac{d^2x}{dt^2} - 2(t+1)\frac{dx}{dt} + (t+2)x = 0,$$

e encontrar uma solução, $\varphi_2(t)$, linearmente independente com $\varphi_1(t)$.

(b) Demostre, que uma solução particular da (I) é dado por:

$$\varphi_0(t) = (t^2 - 2t + 2)e^{2t},$$

e encontrar a solução completa da (I).

¹não homogênea