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ABSTRACT: In this study, we introduce a pioneering approach that leverages
advanced machine learning and ultrahigh-resolution Fourier transform ion
cyclotron mass spectrometry (FT-ICR MS) data to predict the distribution of
the total acid number (TAN) in true boiling point (TBP) distillation cuts from
crude oil. By employing partial least-squares (PLS) regression and ordered
predictor selection (OPS), we achieved robust predictive models with high
accuracy, evidenced by low root-mean-square error of calibration (RMSEC) and
strong correlation coefficients (Rc). Our analysis of 36 diverse crude oil samples
revealed significant variations in chemical composition, with nitrogen- and oxygen-
containing compounds playing key roles in influencing TAN values. Through the
use of volcano plots, we identified critical molecular classes that drive changes in
TAN. The predictive models demonstrated remarkable consistency between
predicted and actual TAN values, particularly in samples with a higher TAN, further validating their reliability. Significantly, our
method overcomes the limitations of traditional ASTM testing by requiring smaller sample volumes while still providing accurate
TAN predictions. This novel approach offers a powerful new tool for the molecular characterization and behavioral forecasting of
complex mixtures, enabling a more efficient pathway for sample analysis when resources are limited.

■ INTRODUCTION
Petroleum is a complex mixture of hydrocarbons that includes
a polar fraction (NSO-based compounds), which plays a
significant role in determining crude oil quality, influencing its
economic value and refining potential.1−5 In this context, the
application of advanced technologies capable of accurately
characterizing the chemical composition of crude oil has been
crucial, enabling correlations with its physicochemical proper-
ties to be established. The total acid content in crude oil is a
key physicochemical property that directly affects its market
value and processing. It is closely linked to corrosion risks in
refineries and significantly impacts the oil’s stability and
quality. This property is not only attributed to carboxylic acids
but also to all organic or inorganic compounds able to react
with a base species, such as phenolic compounds, carbazole,
amines, thiophenols, mercaptans, esters, salts of heavy metals,
and hydrolyzed salts.3,6,7 The crude oil acid levels are
frequently assessed in terms of total acid number (TAN)
measurement, defined as the amount of KOH (mg) necessary
to neutralize the acid compounds in 1 g of crude oil.3,4,6,8,9

Despite the petroleum industry having established laboratory
protocols for determining TAN, these routine analyses are
time-consuming, involving distinct experiments, equipment,
and a significant sample volume.3,10 TAN measurements
typically need significant amounts of crude oil and cannot be
conducted on small samples or when the crude oil has a high

water content. Additionally, to understand the acidity
comprehensively, it is often necessary to distill the crude oil
into various fractions and determine the TAN for each
distillation cut. This process is crucial but further complicates
the procedure, especially when the amount of crude oil is
limited, making it a bottleneck.6,9,11

Ultrahigh resolution mass spectrometry techniques, such as
Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR
MS), combined with multivariate analyses, have yielded
substantial insights into the composition and properties of
petroleum.5−8,12−16 The FT-ICR mass spectrum can contain
up to ∼50,000 peaks. In some cases, the standard data
processing methods are often not sufficient to visualize all
generated data simultaneously and thoroughly explore the
resulting analyses.17,18 Hence, it is recommended to employ
advanced approaches such as machine learning to assess the
data. Machine learning methods have been successfully applied
to predict properties and have proven their effectiveness in
evaluating crude oil properties.4,6,12−16,19
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Approaches combining FT-ICR MS and chemometric tools
have been revealed as an effective strategy to manage these
challenges. Vaz et al. developed uni- and multivariate
calibration methods combining O2 compounds data accessed
by ESI (−) FT-ICR MS and applying chemometric tools to
predict the TAN of crude oils.6 Terra et al. used ESI (−) FT-
ICR MS combined with PLS regression and variable selection
methods to estimate the TAN of Brazilian crude oil samples.7

Afterward, Terra et al. applied ESI (−) FT-ICR MS coupled
with chemometric tools to predict the TAN of distillation
cuts.20 Although these studies applied FT-ICR MS data
combined with chemometric tools, they presented some
limitations: most of them were developed to predict the
TAN only in crude oils,6,7 considering only the data of O2
class,6 or developed to predicted the property in distillation
cuts individually.20 In contrast, we have leveraged multivariate
calibration models using FT-ICR MS data and chemometric
tools capable of accurately predicting the TAN (in a diverse
range) of Brazilian crude oils and their distillation fractions
without requiring distillation. The combination of FT-ICR MS
and chemometric methods has been proven to have great
potential to evaluate other petroleum properties.6,13−16,19 To
continue addressing significant issues in the petroleum
industry, the same approaches applied here could be extended
to predict other relevant petroleum properties and attempt to
address asphaltene deposition based on FT-ICR MS data and
gas-phase fragmentation, which is one of the most significant
bottlenecks in the petroleum sector.21−24

Particularly, PLS regression is advantageous for FT-ICR MS
data due to its ability to handle complex and high-dimensional
data sets.25 PLS is effective in modeling relationships between
large sets of predictors and responses, making it suitable for
FT-ICR MS data, where the number of variables often exceeds
the number of samples. This method reduces dimensionality
while preserving essential information, facilitating the identi-
fication of significant variables correlated with specific
outcomes.26,27 Ordered Predictor Selection (OPS) is a variable
selection method that enhances the interpretability and
predictive performance of multivariate models based on PLS.
OPS works by systematically ranking variables based on their
contribution to the predictive power of the model. This
ranking allows for the identification of the most relevant
predictors while minimizing the influence of noise and
irrelevant variables.28,29 Such methods offer a significant
advantage, as they can understand complex patterns without
requiring prior knowledge of the relationship between
independent and dependent variables.16,29−32 Together, these
methods address the challenges of multicollinearity and
overfitting/underfitting inherent in high-dimensional mass
spectrometry data, leading to more robust and accurate
analytical models.
At the core of this research is the development and

validation of predictive models for determining the TAN
values of crude oils and their distillation cuts. Specifically, the
study focuses on building and evaluating multivariate
calibration models capable of accurately predicting the TAN
of Brazilian crude oils and their distillation fractions. By
applying machine learning to FT-ICR MS data, these models
allow for both direct and indirect determination of TAN
values, streamlining the analysis of complex petroleum samples.
The efficacy of these predictive models lies in their ability to
serve as reliable alternatives to traditional laboratory
methods,33,34 significantly reducing the time and carbon

emissions with TAN determination. In scenarios in which
conventional methods are impractical due to sample scarcity,
this predictive model provides an efficient solution for
characterizing crude oils, eliminating the need for extensive
distillation and titration procedures.

■ EXPERIMENTAL SECTION
Materials. HPLC-grade toluene was purchased from Tedia

Company (Fairfield, USA). Sodium trifluoroacetate (NaTFA),
HPLC-grade methanol, and ammonium hydroxide (NH4OH)
were purchased from Sigma-Aldrich (St. Louis, USA). Thirty-
six crude oil samples were provided by the Centre of Research,
Development, and Innovation Leopoldo Ameŕico Miguez de
Mello (CENPES, Petrobras, Rio de Janeiro, Brazil).
Standard Method of TAN Determination. All crude oil

samples were distilled into fractions (these experiments were
conducted at CENPES), and the TAN values of both the crude
oils and the fractions were determined by the reference
method at CENPES according to the ASTM D664-09
procedure34 using potentiometric titration. It is important to
highlight that only crude oil samples were used in the
development of this work. The distillation fractions were used
solely to obtain the reference TAN values.
Sample Preparation and Mass Spectrometry Anal-

ysis. Crude oils were dissolved in toluene:methanol (50:50, v/
v) at a concentration of 0.500 mg mL−1. To each sample was
added 50 μL of NH4OH to improve ionization. A total of 5.0
μL of a NaTFA methanol solution (1.0 mg mL−1) was added
to each sample and used as an internal standard.
Mass spectrometry analyses were conducted using an FT-

ICR MS 7T SolariX 2xR instrument (Bruker Daltonics,
Bremen, Germany) coupled with an ESI source in negative-
ion mode. Negative ESI was chosen to enhance the ionization
of species with acidic properties, ensuring optimal detection of
TAN-related compounds. The instrument was operated under
optimized conditions to ensure high-quality data acquisition.
For detailed instrument parameters and acquisition settings,
including detection range, ion accumulation, and source
parameters, please refer to Supporting Information Text 1.
The data files were internally recalibrated using the

DataAnalysis software (Bruker Daltonics, Bremen, Germany)
based on selected internal reference peaks from the Kendrick
homologous series. The mass spectra were then processed
using Composer software (Sierra Analytics, Modesto, USA) to
assign molecular formulas to the detected ions.
Additional details regarding formula assignment in Com-

poser, including constraints, mass error tolerance, and
grouping based on heteroatom types, DBE, and carbon
number, as well as the organization of data into composition
tables for machine learning applications, are provided in
Supporting Information Text 2.
Multivariate Analysis. Data Pretreatment. The ESI (−)

FT-ICR MS data utilized to build the models were extracted
from the composition table generated from the Composer
software and imported into MATLAB 2024a (MathWorks,
Natick, USA). A data matrix (X) was created from the
monoisotopic abundance values, also known as the independ-
ent variables. The rows of X represent the oil samples, and the
columns represent the variables. As the acidity of the oil
samples depends on different functional groups, all molecular
formulas found in ESI (−) FT-ICR MS were initially
considered. Then, each row of X was normalized by the sum
of the intensities of all ions detected in each sample. Some
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strategies were applied to preselect the more relevant variables
for modeling, such as excluding X columns with more than 25
zeros removed, as they were not informative.
Modeling. Multivariate data analysis was performed using

Matlab 2024a software (MathWorks, Natick, USA). A vector
containing the respective TAN values was built and designated
y, the dependent variable. The y vector has rows equal to the
number of samples in matrix X. The y vector differed
depending on the TAN values modeled, i.e., TAN values for
crude oil, jet fuel, diesel, gas oil, and vacuum residue. However,
the X matrix was the same for all y vectors, i.e., the matrix X
related to the crude oil was used to predict the TAN values of
the crude oil itself and for its distillation fractions.
Partial least squares (PLS) is a regression method widely

used in multivariate analysis.35,36 This method is proper when
variables are highly correlated and when the number of
independent variables (columns of matrix X) exceeds the
number of samples (rows of matrix X). FT-ICR MS data are
inherently high-dimensional and exhibit strong multicollinear-
ity, which PLS effectively addresses by reducing dimensionality
while maintaining focus on the response variable. This method
was used for their ability to balance predictive performance
and interpretability, which is critical in this study for
understanding the relationship between molecular features
and TAN.
The y vector was always mean-centered during preprocess-

ing to focus the model on variations relative to the mean value,
improving numerical stability and interpretation. Various
preprocessing methods, such as L1 norm, L2 norm, infinity
norm, and autoscale, were applied to the rows of matrix X to
find the best prediction model. Details on these preprocessing
methods are provided in Supporting Information Text 3.
The set of 36 samples was randomly divided into a

calibration set (25 samples used to build the model) and an
external validation set (11 samples used to validate the model
built). During model development, 10-fold cross-validation
was applied within the calibration set to optimize the number
of latent variables (NLV) and evaluate the model performance.
This procedure minimized the risk of overfitting by ensuring
that the calibration process was robust and generalizable.
External validation was subsequently performed to test the
model’s predictive ability on unseen data. The performance of
the models was assessed by the root-mean-square error
(RMSE) and the correlation coefficient (R). Details of the
optimization process are provided in Supporting Information,
Text 4.

= = y y
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where yi and ŷi are the measured and predicted values,
respectively, of a given sample i. The variables y̅ and y are the
means of the measured and predicted values for a set of n
calibration samples. For calibration samples, N represents the
number of samples in the calibration set, and the correlation
and error are called the correlation coefficient of calibration
(Rc) and the root-mean-square error of calibration (RMSEC),
respectively. For external validation, N represents the number
of samples in the prediction set, and the correlation and error

are called the correlation coefficient of prediction (Rp) and the
root-mean-square error of prediction (RMSEP), respectively.

Outlier Detection. Outlier detection was conducted using
several diagnostic plots and statistical tests37−39 to ensure the
robustness and accuracy of the PLS models. Leverage and
studentized residual plots were employed to investigate
potential outliers. Additionally, Hotelling’s T2 statistic and Q
residuals were used as complementary tools for outlier
detection.40,41

Variable Selection. Feature selection was conducted using
the ordered predictors’ selection (OPS) algorithm.28,29 OPS
involves sorting variables based on informative vectors and
systematically exploring regression models to identify the most
relevant set of variables. The approach feedOPS was used
considering all of the available informative vectors. The
variables were searched using a window of 10 and an
increment of 2. Additional information can be found elsewhere
for a more in-depth understanding of the OPS algorithm.29

Hereafter, PLS is used to represent the models that used all
variables available, and PLS-OPS is used to represent the
models that used the variables selected using the OPS.

■ RESULTS AND DISCUSSION
Samples Characterization. The application of negative

ESI, as demonstrated in previous studies, enabled the selective
detection of acidic species in the 36 crude oil samples, aligning
seamlessly with the study’s goal of identifying molecular
contributors to the TAN. The high quality of the FT-ICR MS
data is evidenced in Table S1 (Supporting Information), which
details the number and percentage of peaks successfully
assigned to molecular formulas, while Figure S1 (Supporting
Information) presents the error distribution across the m/z
range, further validating the reliability and precision of the
mass spectrometric analysis.8,22,42 The 36 crude oil samples
were initially characterized by analyzing their spectra, as
presented in Figure S2 of the Supporting Information. This
comprehensive spectral analysis provides an overview of each
sample’s chemical composition, highlighting the diversity
within the data set. Following the spectral analysis, the class
distribution of the samples is presented, initially categorized
into 20 classes, as shown in Figure S3 of the Supporting
Information. This extensive classification underscores the
variability and complexity of the crude oil samples.
Furthermore, the class distribution was refined to 10 classes,

selected during the preselection of variables before modeling.
Classes with relative abundances of >1% in at least 50% of the
samples and >5% in all samples were selected for modeling.
This refined selection is presented in Figure 1, demonstrating a
simplified yet effective classification that retains the essential
variability of the samples.
Figure 1 presents a detailed visualization of the relative

abundance of various compound classes across 36 crude oil
samples. The x-axis displays the individual samples, with each
vertical line representing a single sample. The y-axis lists the
different compound classes, ordered from the most abundant
on average to the least abundant. The color scale and size of
the circles both correspond to the relative abundance (%) of
each compound class within a sample. Warmer colors (ranging
from yellow to red) and larger circles indicate higher relative
abundances, while cooler colors (ranging from green to blue)
and smaller circles represent lower relative abundances. Empty
spaces in the grid indicate the absence of a particular
compound class in that sample.
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Compounds containing only one nitrogen (N) atom in their
molecular formula have the highest relative abundance, with
many data points close to 100%, indicating their dominance in
the samples. In contrast, the classes of compounds such as N2,
N2O, NO, NO2, NS, O2S, and OS show significantly lower
relative abundances, with most data points clustered at the
lower end of the scale (0−10%), indicating their presence in
much smaller quantities. Compounds containing only oxygen
(O and O2) also show moderate relative abundance, with a
range of values that characterize their variable presence in the
samples.
A notable observation is that two of the samples contain

only three classes: N, which is the most abundant, followed by
O and O2. These samples are easily identified by the presence
of circles in only three rows corresponding to these classes,
with the N class showing the largest and warmest-colored
circles, indicating its dominance. Overall, this distribution
provides a clear and comprehensive overview of compound
classes across the crude oil samples, highlighting the variability
in chemical composition and the dominance of certain classes
in specific samples.
Figure 2 presents violin plots of the TAN values for crude oil

and its distillation cuts, including jet fuel, diesel, gas oil, and
vacuum residue. This visualization provides a comprehensive
comparison of TAN distributions across different petroleum
fractions.
Violin plots were used to illustrate the density and spread of

the data. These representations combine a box plot and a

kernel density plot to show the distribution and frequency of
the TAN values. The width of each violin plot at any given
TAN value corresponds to the frequency of that value within
the data set. More comprehensive sections of the plot indicate
higher frequencies of TAN values, while narrower sections
indicate lower frequencies.
Crude oil exhibits a broad distribution of TAN values with

significant variability, as indicated by the spread variation
within the plot. Jet fuel shows a narrower distribution of TAN
values, concentrated around lower values, reflecting its
relatively lower acidity compared to other fractions. Diesel
has a broader range of TAN values, suggesting more significant
variability in its acidic properties. Gas oil displays the highest
TAN values, with a considerable spread, indicating diverse
acidic content within this fraction. Vacuum residue shows the
lowest TAN values among the fractions, with a narrow
distribution suggesting consistent low acidity.
Figure 3A presents the distribution of compound classes

across 36 crude oil samples combined with the crude oil TAN

values displayed on the color scale. The figure highlights the
relative abundance of different compound classes and their
relationship with TAN values. The most prominent classes,
particularly N, O, and O2, show significant variation in relative
abundance and TAN, making them key contributors to the
overall acidity of the samples. Figure 3B,C further explore the
distribution of double bond equivalents (DBE) and the
number of carbon atoms (#C), which are representative of
the samples from these three most abundant classes.
The visualization in Figure 3A clearly indicates that classes

N, O, and O2 are the most influential in determining the TAN
values across the samples. The strong correlation between
higher TAN values and the relative abundance of these classes
suggests that they are critical in driving the acidity of crude
oil.7,20 The detailed molecular structures shown in the inset
further underscore the variety within these classes, particularly

Figure 1. Class distribution of 10 compound classes selected during
the preselect variables step before modeling. The plot shows the
relative abundance (%) of various nitrogen (N, N2), nitrogen−oxygen
(N2O, NO, NO2), nitrogen−sulfur (NS), oxygen (O, O2), oxygen−
sulfur (O2S), and oxygen−sulfur (OS) containing compounds across
the samples.

Figure 2. Violin plots of TAN values for petroleum-derived samples
(crude oil and its distillation cuts: jet fuel, diesel, gas oil, and vacuum
residue).

Figure 3. (A) Distribution of compound classes across 36 crude oil
samples, combined with the TAN values (mg of KOH g−1 oil)
represented by the color scale. The most prominent classes (N, O,
and O2) are highlighted for their significant variation in relative
abundance and TAN values. (B) Distribution of double bond
equivalents (DBE) for the three most abundant classes (N, O, and
O2), showing the representative DBE values for these compounds
across the samples. (C) Distribution of the number of carbon atoms
(#C) for the same classes. The molecular structures correspond to the
most abundant core structures within the three classes.
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concerning DBE, which correlates with molecular unsaturation
and aromaticity.
Figure 3B,C provide further insight by showing the

distribution of DBE and #C for the N, O, and O2 classes,
which are representative of these samples. The peaks in DBE
for the N class indicate the importance of aromatic and
polycyclic nitrogen compounds, specifically carbazoles and
their benzohomologues, in contributing to TAN.8 Carbazoles
are tricyclic compounds that contain nitrogen and are known
for their stability and aromaticity. The DBE values of 9, 12, and
15 correspond to carbazoles and their extended structures with
additional aromatic rings. These compounds are significant
contributors to TAN because their nitrogen atoms can increase
the acidity of crude oil, especially when these structures are
present in higher concentrations.
For the O class, a notable observation is the presence of

phenolic compounds, which have DBE values starting at 4.
These compounds are typically characterized by a single
aromatic ring with one hydroxyl group attached. The relatively
low DBE of 4 corresponds to the basic structure of phenols,
which are known for their acidic properties and can
significantly contribute to the overall TAN of crude oil.43

The O2 class, which includes compounds with two oxygen
atoms, is primarily characterized by the presence of linear
saturated acids.6,8,20 The #C distributions (Figure 3C) reveal
peaks at 16 and 18 carbon atoms, corresponding to long-chain
fatty acids, such as palmitic acid (C16) and stearic acid (C18).
However, the O2 class also includes saturated and aromatic
acids with ring structures. These acids, while less prevalent
than the linear saturated acids, also contribute to the overall
TAN. The combination of these different types of acids within
the O2 class underscores the complexity of this group and its
significant impact on the acidity of the crude oil samples.
To further investigate the relationship between variable

classes and TAN values in crude oil, the samples with low

(∼0.06 mg KOH g−1 oil) and high (∼2.3 mg KOH g−1 oil)
TAN values were compared using volcano plots (Figure S4,
Supporting Information). The comparisons were made
separately for the three most prominent classes: N, O, and
O2. The volcano plot results showed a higher fold change for
compounds with O2 in samples with higher acidity and for
compounds with N and O in samples with lower acidity.
Further explanations are provided in Supporting Information
Text 6.
In summary, the characterization of crude oil samples

through the analysis of compound classes and their relation-
ship with TAN values has provided valuable insights into the
chemical contributors to acidity in these samples. The detailed
examination of class N and oxygen-containing compounds
(classes O and O2) highlights the significant roles that these
classes play in determining TAN. Notably, the distribution
patterns observed in the volcano plots and DBE analysis
underscore the impact of specific structures, such as
naphthenic acids, in driving the acidity levels. This
comprehensive characterization sets a strong foundation for
the subsequent development of regression models, which will
leverage these insights to predict TAN values more accurately
and efficiently across different crude oil samples.
Regression Models. In this section, we present the results

of the regression models developed to predict the TAN of
crude oils and their distillation cuts based on the compositional
data obtained from the FT-ICR MS spectra of crude oil. The
detailed results are presented in Table S2 with the performance
of PLS and PLS-OPS models. Figure 4 showcases the
performance of the PLS-OPS regression models by comparing
the predicted TAN values with the measured reference values
for crude oil and its fractions. Each subplot in the top row
represents a different fraction with the x-axis showing the
reference TAN values and the y-axis showing the predicted
TAN values. The points closely aligned with the diagonal

Figure 4. Comparison of measured reference and predicted TAN values for crude oil and its distillation cuts [(A) crude Oil, (B) jet fuel, (C) diesel,
(D) gas oil, and (E) vacuum residue]. The top row shows scatter plots of predicted versus reference TAN values, with the dashed line representing
the ideal 1:1 correlation. The bottom row presents the residuals for the predictive models of TAN values in (F) crude oil, (G) jet fuel, (H) diesel,
(I) gas oil, and (J) vacuum residue. The blue circles represent calibration samples, and the red diamonds represent prediction samples. The
histograms on the right side of each plot show the distribution of residuals, providing a visual assessment of the residuals’ spread and central
tendency.
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dashed line indicate a strong agreement between the predicted
and actual values, demonstrating the accuracy of the models.
Additional details regarding model optimization are provided
in Figures S5 and S6 (Supporting Information). Figure S5
illustrates the RMSECV as a function of the NLV, highlighting
the process used to optimize the model structure. Figure S6
shows the evolution of variable selection through OPS,
demonstrating how the number of selected variables impacts
the cross-validation error during the internal validation and
model-building process.
For crude oil, both PLS and PLS-OPS exhibit reasonably

low RMSEC values, indicating effective model fitting, with
PLS-OPS demonstrating notable improvement in the Rc and
Rp. This suggests that the OPS enhances the model’s accuracy
in capturing the variation in TAN for crude oil. Similar trends
are observed for jet fuel, diesel, gas oil, and vacuum residue,
where PLS-OPS consistently outperforms the standard PLS
method regarding Rc and Rp, showcasing its efficacy in
variable selection for improved model performance.
Furthermore, the number of variables (Table S2, Supporting

Information) selected by PLS-OPS is considerably reduced
compared to using all variables in PLS, demonstrating the
efficiency of the OPS method in identifying key variables
relevant to TAN prediction. The results also highlight the
application of PLS-OPS in overcoming overfitting issues, as
evidenced by the lower RMSEP values in PLS-OPS models.
These findings underscore the importance of employing
variable selection techniques such as PLS-OPS to enhance
the robustness and interpretability of predictive models for
TAN in diverse oil fractions.
The relative errors (Figure S7, Supporting Information)

reveal some instances of high relative errors that appear
disproportionately large. These high relative errors might seem
unacceptable for a predictive model at first glance, especially
when the typical expectations for model accuracy. This
discrepancy raises concerns and warrants closer examination.
In predictive modeling, such high relative errors can occur

even when the predicted values are numerically close to the
measured values, particularly when the actual TAN values are
very low. In such cases, even small absolute differences
between the predicted and measured values can result in large
relative error percentages. This phenomenon is particularly
evident in samples with very low TAN values, where the
relative error can be misleadingly high despite the model’s
strong overall performance.
Given these observations, a thorough investigation of all

samples was conducted to identify potential outliers. Each
sample with a high relative error was scrutinized to determine
whether it represented an anomaly or if the model’s prediction
was systematically off for certain types of samples.
Despite the initial concern raised by the high relative errors

in some samples, particularly in those with low TAN values,
the investigation revealed that none of these samples could be
definitively classified as outliers. The model provides reliable
predictions for higher TAN values, addressing critical industrial
needs while acknowledging that accuracy for low TAN samples
could be improved with future refinements.
The leverage and studentized residual plots (Figure S8,

Supporting Information) did not indicate any sample with a
leverage value far exceeding the others, nor did the studentized
residuals suggest any extreme deviations. Similarly, Hotelling’s
T2 and Q residuals (Figure S8, Supporting Information) were
within acceptable ranges, further supporting that these samples

were consistent with the overall data set and did not
compromise the model’s integrity. Consequently, no samples
were removed from the analysis, as they were determined to be
valid data points rather than outliers. The decision to retain all
samples was further supported by the results of the Shapiro-
Wilk test [p values presented in Table S3 (Supporting
Information)], which was applied to the residuals of the
predictions.
Following this analysis, residuals provide a more faithful

representation of model robustness than relative error alone.
By examination of the distribution of residuals (Figure 4), one
can assess how well the model captures the underlying trends
in the data. In this case, the residuals followed a normal
distribution, as validated by the Shapiro−Wilk test with a 95%
confidence level. The histogram of the residuals, displayed
alongside the normal distribution, further supports this
conclusion. The close alignment of the residuals with a normal
distribution suggests that the predictive models are both
reliable and accurate, reinforcing their utility for determining
TAN values across crude oil and its distillation cuts. Table S3
(Supporting Information) presents the means and standard
deviations of the residuals, along with the corresponding values
for 2 and 3 times the standard deviation (2σ and 3σ), which
represent 95 and 99% confidence intervals, respectively. For
instance, in the case of the crude oil model, the standard
deviation of the residuals is 0.018 mg KOH/g. This indicates
that approximately 68% of the residuals are expected to fall
within the range of ±0.018 mg KOH/g from the mean (1σ).
When considering 2 times the standard deviation, correspond-
ing to ±0.037 mg KOH g−1 oil, about 95% of the residuals
should lie within this interval (2σ). Finally, with 3 times the
standard deviation, we obtain a range of ±0.055 mg KOH g−1

oil, covering 99% of the residuals (3σ).
Therefore, for the crude oil model, we can assert that 99% of

the TAN predictions have an expected residual error within
±0.055 mg of KOH g−1 of oil, based on the performance
observed in the calibration set. This parameter serves as a
confidence measure in the model’s accuracy, allowing for an
assessment of how well the TAN predictions align with the
measured values. Table S3 includes similar data for the
distillation cut models, providing a comprehensive view of the
models’ robustness under different conditions.
While the regression models demonstrated strong perform-

ance based on the calculated metrics, it is important to
acknowledge the limitations associated with the relatively small
data set of 36 samples. Although rigorous cross-validation
techniques were employed to optimize the models and
mitigate the risk of overfitting, the small sample size could
affect the generalizability of the results to broader data sets.
Future work should focus on expanding the data set to include
additional crude oil samples and distillation fractions with
varying chemical compositions. This expansion would not only
enhance model robustness but also allow for a more
comprehensive exploration of the relationship between
molecular features and TAN, potentially uncovering new
insights into crude oil chemistry.
After establishing the models’ performance, it is crucial to

understand the types of variables selected by the OPS
responsible for the final prediction accuracy. By analyzing the
variables selected by the OPS, we can gain insights into which
chemical components or classes in the crude oil spectra are
most influential in determining TAN values.
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Variable Selection. Figure 5 presents the selected
variables concerning DBE on the y-axis, with the color scale
representing the number of carbon atoms for each modeled
class of crude oil and its distillation cuts.
The selected variables across the models for crude oil and its

distillation cuts (jet fuel, diesel, gas oil, and vacuum residue)
reveal significant diversity in both the DBE and the number of
carbon atoms. The DBE values span a broad range, generally
between 5 and 25, indicating the presence of both saturated
and unsaturated structures across all fractions. This range
reflects the necessity of accounting for various degrees of
unsaturation to accurately predict the TAN in each fraction.
Molecules from classes N, O, and O2 are consistently

prominent among the selected variables across all models.
Notably, the O2 class was not selected in the vacuum residue
model, highlighting some variability in the importance of
specific oxygenated species across different fractions. Addi-
tionally, nitrogen and nitrogen−oxygen compounds, such as
N2, NO, and NO2, also appear as significant contributors in
several models, underscoring their relevance in predicting
TAN.
Among the nitrogen-containing species, the N2 class is

particularly noteworthy. The N2 class species with a DBE of 17
likely corresponds to molecules with two fused carbazole cores.
Additionally, the series with a DBE of 18 could represent
structures such as a benzocarbazole fused with a quinoline
molecule or two carbazoles joined by a bridge bond.44 The
NOx classes (NO and NO2) are also significant in the selected
variables. The NO class, which was observed across multiple
fractions, likely corresponds to products derived from the
biodegradation process, where carboxylic acid is added to
pyrrole nuclei, forming complex nitrogen−oxygen structures.8

These compounds may play a role in differentiating TAN
values by introducing variations in acidity due to their unique
chemical properties. Additionally, the broader NOx class may
translate to furrolic, phenolic, and/or carboxylic analogues,19

which are also important in determining the TAN.
The number of carbon atoms in these selected variables

typically ranges from 20 to 60, demonstrating that molecules of

moderate to large sizes play a significant role in the predictive
models for all oil fractions. The complexity and diversity of
each fraction are further highlighted by the distributions of
these variables. For example, the vacuum residue, which is the
heaviest fraction, requires a more extensive and varied set of
predictors, as evidenced by the broader range of DBE and #C
values. This reflects the intricate nature of this fraction, where
both moderately and highly unsaturated species as well as a
wider range of molecular sizes are crucial for accurate TAN
prediction.
Overall, the selected variables across all fractions highlight

the varying degrees of complexity and the necessity of a
tailored set of predictors for each fraction. With their more
complex profiles, crude oil and gas oil require a diverse set of
variables spanning wide DBE and #C ranges. In contrast, with
a simpler composition, jet fuel needs fewer and fewer complex
predictors. Diesel and vacuum residue fall in between,
reflecting their moderate to high complexity. Understanding
these key contributors helps refine predictive models and
supports more efficient processing and quality control across
different fractions, ensuring accurate TAN determination and
optimizing refining processes.
TAN Boiling Point Distribution. TAN and its distribution

as a function of the true boiling point (TBP) are crucial
parameters for understanding the acidic content of crude oils
and their distillation cuts. This distribution, often termed the
TAN true boiling point distribution, provides insight into the
TAN values across different boiling ranges. The TAN TBP
distribution is essential for optimizing refinery operations,
managing corrosion, and ensuring the safe processing of high-
TAN crudes. Traditionally, as mentioned earlier, the TAN is
determined through nonaqueous titration, and the BP
distribution is obtained by measuring the TAN in selected
distillation cuts. This process often involves interpolation and
extrapolation to estimate the TAN across the boiling range.45

However, the traditional method is time-consuming, requiring
physical distillation of the crude, followed by titration of the
cuts, making the development of more efficient analytical
methods a priority for the industry. In this work, since we

Figure 5. Selected variables by the OPS method highlighting double bond equivalents (DBE) and the number of carbon atoms (#C) for each
modeled class: crude oil, jet fuel, diesel, gas oil, and vacuum residue. (A) Crude oil, (B) jet fuel, (C) diesel, (D) gas oil, and (E) vacuum residue.
The color scale indicates the #C of the selected variables.
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developed predictive models for TAN in crude oil and its
distillation cuts using only crude oil samples, we are able to
obtain the TBP distribution of the cuts directly, as shown in
Figure 6.
The TAN TBP distribution curves presented in Figure 6

demonstrate a close alignment between the reference TAN
values (black solid lines) and the predicted TAN values (red
dashed lines) across the different distillation cuts. This
alignment suggests that the predictive model performs well
in capturing the distribution of acidity within the crude oil
samples. Notably, as the TAN values increase from the sample
shown in Figure S9A−H, the agreement between the predicted
and reference curves improves, indicating that the model’s
accuracy is particularly robust for samples with higher TAN
values. A broader overview of the TAN TBP distribution for all
36 samples is provided in Supporting Information Figure S9,
further confirming the model’s consistency across a diverse
range of crude oils.
In summary, the method developed in this study offers an

innovative and efficient approach for predicting the TAN of
crude oils and their distillation cuts, utilizing exclusively FT-
ICR MS. This approach represents a significant advancement
in petroleomics, as it enables the detailed assessment of
petroleum acidity without the need for the time-consuming
and costly processes traditionally required, such as physical
distillation and titration. The key advantage of this method is
its ability to transform a single mass spectrometry analysis into
an accurate prediction of complex properties, such as the TAN
in crude oil distillation cuts. This capability is particularly
relevant for the petroleum industry, where critical concerns
include optimizing refinery operations, managing corrosion
risks, and safely processing high-TAN crudes. Beyond TAN
prediction, the integration of FT-ICR MS data with predictive
modeling approaches has the potential to be expanded to other
key applications. For example, nitrogen- and sulfur-containing
compounds, which play critical roles in determining crude oil
quality and environmental compliance, have already been
explored by our research group. These studies highlight the
versatility of this approach in predicting properties linked to
the molecular composition.
Furthermore, the methodology could be extended to address

asphaltene deposition, which is a significant issue in refining
and transportation processes. Predictive models capable of
correlating FT-ICR MS data with asphaltene deposition

tendencies could provide valuable insights for preventing
pipeline blockages and optimizing refining strategies. This
flexibility underscores the broader applicability of this
approach to tackling a range of challenges associated with
crude oil and its fractions. The application of FT-ICR MS, with
its ultrahigh resolution and accuracy, allows for comprehensive
characterization of the complex mixtures found in crude oil,
enabling the identification and quantification of thousands of
molecular species simultaneously.
Technological advancements in mass spectrometry, partic-

ularly through FT-ICR MS, have been instrumental in realizing
this method, making it a valuable tool for the industry.
Accurate prediction of TAN using this method not only
conserves time and resources but also provides critical insights
that can be utilized to optimize refinery operations and ensure
safety in the processing of crude oils with varying levels of
acidity.
This work clearly demonstrates the potential of FT-ICR MS

to transform the determination of critical petroleum properties,
opening new avenues for the application of petroleomics in
industry and other areas that handle complex mixtures. As
mass spectrometry technology continues to evolve, the
potential for its application in petroleomics will only expand,
driving further innovation and optimization in crude oil
processing.

■ CONCLUSIONS
This study successfully applies PLS and OPS models to predict
TAN in crude oil and its distillation cuts, specifically in true
boiling point distributions, using ultrahigh resolution mass
spectra directly from crude oil composition, without the need
for further distillation. The development and validation of
these models demonstrate robust predictive performance,
evidenced by low RMSEs and high correlation coefficients,
while eliminating the need for additional time-consuming
assays, such as the distillation ASTM protocols, further
underscoring their accuracy and efficiency in forecasting
TAN. The initial characterization of the crude oil samples
provided a comprehensive overview of their chemical
composition. Spectral analysis and class distribution revealed
the diversity and complexity inherent to the samples. By
grouping the samples based on TAN values and conducting
paired analyses using volcano plots, we identified significant
variable classes associated with changes in TAN values. This

Figure 6. TAN true boiling point (TBP) distribution for eight crude oil samples (A−H) with varying TAN values across different distillation cuts.
The x-axis represents the approximate average temperature range corresponding to the boiling points of the cuts: jet fuel (150−250 °C), diesel
(250−400 °C), gas oil (400−500 °C), and vacuum residue (500−600 °C). The black solid line represents the reference TAN values measured by
titration, while the red dashed line shows the TAN values predicted by the model.
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detailed analysis highlighted the dynamic relationship between
TAN values and the abundance of specific compound classes,
emphasizing the critical role of nitrogen- and oxygen-
containing compounds.
The models’ results showed a strong agreement between

predicted and measured TAN values and the minimal
residuals, which further confirmed the models’ robustness. A
thorough evaluation of potential outliers was conducted, and it
was determined that no samples needed to be removed, as
even those with higher relative errors did not unduly influence
the model’s performance. The analysis of selected variables by
OPS provided more profound insights into the specific
chemical characteristics driving the TAN predictions. The
selected variables varied significantly across different fractions,
reflecting the diverse and complex nature of the samples.
Furthermore, the TAN TBP distribution analysis showed a
strong correlation between predicted and reference curves,
especially as TAN values increased, demonstrating the
method’s applicability for refining processes.
The quality of the FT-ICR MS data, including precise

calibration and accurate molecular formula assignment, was
critical in ensuring the reliability of the models’ predictions.
These foundational aspects highlight the robustness and
reproducibility of the analytical workflow. Additionally, the
approach demonstrated in this study has the potential for
broader applications beyond TAN prediction. For instance, the
same methodology could be adapted to predict properties such
as asphaltene deposition tendencies or sulfur compound
distributions, both of which are critical for refining operations
and environmental compliance.
In conclusion, this research highlights the efficacy of

combining advanced mass spectrometry techniques with
machine learning models to predict TAN values accurately.
The strong predictive performance of the models and the
detailed understanding of the key chemical contributors
provide valuable tools for the petroleum industry. These
insights can significantly streamline the process of TAN
determination, facilitating more efficient refining processes and
better quality control. This study paves the way for further
advancements in predictive modeling and analytical techniques
in the context of complex sample properties.
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