

NUTRICÃO E SALÍDE

PROGRAMA DE PÓS-GRADUAÇÃO EM NUTRIÇÃO E SAÚDE - PPGNUT

DISCIPLINA: Estatística Avançada

ÁREA DE CONCENTRAÇÃO: Nutrição e Saúde

LINHAS DE PESQUISA: Diagnóstico e Intervenção Nutricional; Segurança Alimentar e Nutricional

e Ciência dos Alimentos

) Formação Pedagógica (X) Formação para a Pesquisa

PROFESSOR RESPONSÁVEL: Alexandre Sigueira Guedes Coelho

PROFESSORA PARTICIPANTE: Raquel Machado Schincaglia

Carga Horária	Nº DE CRÉDITOS	CÓDIGO SIGAA	SEMESTRE E ANO
48 h	3	NSA0061	1º/2024

EMENTA

Análise de dados pela utilização de ferramentas computacionais. Estatística Descritiva. Tabelas e gráficos. Estimação por ponto e por intervalo de parâmetros de tendência central e de dispersão. Testes de normalidade. Testes de comparação de médias. Análise de correlação. Análise de regressão linear simples e múltipla. Análise de variância. Testes não paramétricos. Métodos de análise multivariada. Introdução à meta-análise.

OBJETIVOS

GERAL

Proporcionar aos alunos o conhecimento necessário para realizar a aplicação dos métodos estatísticos comumente utilizados na análise de dados, capacitando-os a utilizar estes métodos em trabalhos de pesquisa.

Específicos

Capacitar os alunos a construir adequadamente bancos de dados de pesquisa.

Capacitar os alunos a realizar a análise descritiva de bancos de dados de pesquisa.

Capacitar os alunos a analisar estatisticamente dados de pesquisa, utilizando procedimentos estatísticos adequados.

CONTEÚDO

O ambiente R de análise de dados. Utilização de ferramentas computacionais para a construção de tabelas e gráficos. Utilização de ferramentas computacionais para a estimação (por ponto e por intervalo) de parâmetros. Utilização de ferramentas computacionais para execução de testes de hipóteses estatísticas: Teste de *Shapiro-Wilk*; Teste de *Lilliefors*; Teste t de *Student*; Teste F de *Snedecor*, Teste de *Wilcoxon*; Análise de Variância; Teste de *Kruskal-Wallis*; Testes de comparação múltipla a posteriori; Análise de Covariância; Análise de correlação de *Pearson* e *Spearman*; Análise de regressão linear simples e múltipla; Análise de regressão logística. Análise de Componentes Principais. Análise fatorial. Meta-análise.

METODOLOGIA

Exposição oral.

Resolução e discussão de exercícios.

Aulas práticas, com utilização de ferramentas computacionais de análise estatística.

PROCESSOS E CRITÉRIOS DE AVALIAÇÃO

Participação comprometida nas aulas e atividades práticas (frequência mínima de 85%).

A nota final será constituída pela média aritmética das notas atribuídas aos relatórios de atividades

práticas. Serão 10 relatórios com notas que variam entre 0 e 10.

Para atribuição do conceito será utilizada a escala constante no Art. 35 da Resolução CEPEC nº 1627 – Regulamento do PPGNUT/UFG.

CRONOGRAMA

DATA	HORÁRIO	CONTEÚDO/TEMA	СН
11/03	8:00 – 12:00	O ambiente R de análise de dados.	4
18/03	8:00 – 12:00	Utilização de ferramentas computacionais para a construção de tabelas e gráficos.	4
25/03	8:00 – 12:00	Utilização de ferramentas computacionais para a estimação (por ponto e por intervalo) de parâmetros.	4
01/04	8:00 – 12:00	Utilização de ferramentas computacionais para a realização de testes de hipótese (testes de normalidade: Teste de <i>Shapiro-Wilk</i> e Teste de <i>Lilliefors</i>).	4
08/04	8:00 – 12:00	Utilização de ferramentas computacionais para realização de testes de hipótese (testes <i>t</i> de <i>Student</i> , teste <i>F</i> de <i>Snedecor</i> e testes de <i>Wilcoxon</i>).	4
15/04	8:00 – 12:00	Utilização de ferramentas computacionais para realização de testes de hipótese (Análise de Variância e testes de comparação múltipla <i>a posteriori</i>).	4
22/04	8:00 – 12:00	Utilização de ferramentas computacionais para realização de testes de hipótese (Análise de Covariância e Teste de <i>Kruskal-Wallis</i>).	4
29/04	8:00 – 12:00	Utilização de ferramentas computacionais para realização de análise de correlação de <i>Pearson</i> e <i>Spearman</i> , e análise de regressão linear simples.	4
06/05	8:00 – 12:00	Utilização de ferramentas computacionais para realização de análise de regressão linear múltipla.	4
13/05	8:00 – 12:00	Utilização de ferramentas computacionais para realização de análise de regressão logística.	4
20/05	8:00 – 12:00	Utilização de ferramentas computacionais para realização de análises multivariadas (Análise de Componentes Principais e Análise Fatorial).	4
27/05	8:00 – 12:00	Meta-análise.	4

REFERÊNCIAS

ALTMAN, D.G. Practical Statistics for Medical Research. 2ª ed. Chapman & Hall/CRC, 2020.

JONES, E.; HARDEN, S.; CRAWLEY, M.J. The R Book. 3a ed. John Wiley & Sons, 2022.

ÇETINKAYA-RUNDEL, M.; HARDIN, J. *Introduction to Modern Statistics*. Disponível em: https://www.openintro.org/book/ims/. 2023.

HOLMES, S.; HUBER, W. *Modern Statistics for Modern Biology*. Disponível em: https://web.stanford.edu/class/bios221/book/. 2023.

PAGANO, M.; GAUVREAU, K. Principles of Biostatistics. 3ª ed. Duxbury Press, 2022.

ROSNER, B. Fundamentals of Biostatistics. 8a ed. Cengage Learning, 2015.

SOKAL, R.R. & ROHLF, F.J. Biometry. 4ª ed. W. H. Freeman, 2011.

VIEIRA, S. Bioestatística: Tópicos Avançados. 5ª ed. Elsevier, 2023.

VU, J.; HARRINGTON, D. *Introductory Statistics for the Life and Biomedical Sciences*. Disponível em: https://www.openintro.org/book/biostat/. 2021.

WHITLOCK, M.C.; SCHLUTER, D. The Analysis of Biological Data. 3ª ed. W.H. Freeman, 2020.

Artigos selecionados.