

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS - ESCOLA DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO DE PLANTAS

PLANO DE ENSINO

Disciplina: Introdução à Genômica						
Área de concentração: Genética e Melhoramento de Plantas						
Linha de pesquisa: Genética e Genômica de Plantas						
Tipo de disciplina:	(X) Formação pedagógica	(X) Formação para a pesquisa				
Professor responsável: Alexandre Siqueira Guedes Coelho						
Carga Horária: 64h		N° créditos: 4				
Fluxo: Anual, primeiro semestre		Código no SIGAA: GMP0031				

Semestre: 2023/1		
Dia da semana: sextas-feiras	Horário: 08:00 – 12:00	
Início: 24/03/2023	Previsão de término: 21/07/2023	
Formato: presencial	Local: a definir	

Ementa

- 1. Histórico. 2. Características gerais dos genomas eucarióticos. 3. Polimorfismos de um único nucleotídeo e suas aplicações na análise genômica. 4. Elementos transponíveis. 5. Transcritômica. 6. Epigenética.
- 7. Proteômica. 8. Genética Reversa. 9. Metabolômica. 10. Biologia Integrativa.

Objetivos

Proporcionar ao estudante o desenvolvimento de uma visão clara e atualizada a respeito dos conceitos e métodos fundamentais de análise das ciências genômicas, com ênfase nos aspectos básicos relacionados à caracterização e anotação dos genomas de plantas.

Conhecimento prévio desejado

Embora não seja um pré-requisito, o conhecimento prévio do conteúdo da disciplina Genética é desejado.

Conteúdo		Cronograma
1.	Introdução	
1.1.	Histórico – O desenvolvimento da Genômica	0 h
1.2.	Revisão de Biologia Molecular	8h
1.3.	Bancos de dados de sequências de DNA e proteínas	
2.	Caracterização do genoma das plantas	
2.1.	Estrutura genômica de procariotos	
2.2.	Estrutura genômica de eucariotos	16h
2.3.	Tecnologias de sequenciamento de DNA	
2.4.	Estratégias de sequenciamento de genomas	
3.	Polimorfismos de um único nucleotídeo (SNPs)	8h

3.1.	Conceitos básicos	
3.2.	Tecnologias de genotipagem de SNPs	
4.	Elementos Transponíveis	
4.1.	Classificação	4h
4.2.	Importância evolutiva	
5.	Regulação da expressão gênica em plantas	
5.1.	Mecanismos básicos de regulação	
5.2.	Fatores de transcrição	4h
5.3.	Mecanismos Epigenéticos	
5.4.	RNAs não-codantes	
6.	Transcritômica	
6.1.	Estratégias de análise de transcritomas	4h
6.2.	Análise de RNAseq	
7.	Introdução à Proteômica	
7.1.	Técnicas básicas de análise de proteínas	
7.2.	Tecnologias de análise de proteomas	4h
7.3.	Proteômica quantitativa	
7.4.	Técnicas de caracterização de interactomas	
8.	Análise funcional pela estratégia de Genética Reversa	
8.1.	Utilização de linhagens mutantes	4h
8.2.	Transformação genética de plantas	411
8.3.	O sistema CRISPR	
9.	Vias metabólicas em plantas	
9.1.	Descrição geral	
9.2.	Exemplos de vias metabólicas de grande interesse em estudos com plantas	4h
9.3	Bancos de dados de vias metabólicas	411
9.4	Ontologias de genes	
9.5	Análise de enriquecimento	
10.	Introdução à Biologia Integrativa	
10.1.	A paisagem epigenética de Waddington	8h
10.2.	Fenômica	OII
10.3.	A integração das ômicas e suas aplicações	

Metodologia

- Exposição oral.
- Discussão de artigos relativos ao conteúdo.
- · Aulas práticas.

Processos e critérios de avaliação

A nota final será constituída pela média aritmética das notas atribuídas a duas avaliações escritas. Para a atribuição dos conceitos, será utilizada a seguinte escala:

Notas de 8,5 – 10: Conceito A - Muito Bom, aprovado com direito a crédito.

Notas de 7,0 – 8,4: Conceito B - Bom, aprovado com direito a crédito.

Notas de 6,0 – 6,9: Conceito C - Regular, aprovado com direito a crédito.

Notas < 6,0: Conceito D - Insuficiente, reprovado sem direito a crédito.

Referências

* Artigos selecionados.

Baxevanis, A.D.; Bader, G.D. Wishart, D.S. **Bioinformatics - A Practical Guide to the Analysis of Genes and Proteins.** 4ª ed. Wiley. 2020. 656p.

Brown, T.A. Genomes 4. 4ª ed. Garland Science. 2018. 520 p.

Buchanan, B.B.; Gruissem, W.; Jones, R.L. **Biochemistry and Molecular Biology of Plants.** 2ª ed. Wiley. 2015. 1280 p.

Curry, E. Introduction to Bioinformatics with R. Chapman & Hall/CRC. 2020. 298 p.

Gibson G., Muse S.V. **A primer of genome science.** 3ª ed. Sinauer Associates Inc., Sunderland, MA. 2010. 370 p.

Johnson, A.D.; Alberts, B.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Raff, M.; Walter, P.; Heald, R. **Molecular Biology of the Cell.** 7ª ed. WW Norton & Co. 2022. 1552 p.

Krebs, J.E.; Goldstein, E.S.; Kilpatrick, S.T. **Lewin's Essential Genes.** 4ª ed. Jones & Bartlett Learning. 2020. 1044 p.

Lesk, A.M. Introduction to Bioinformatics. 5ª ed. Oxford University Press. 2019. 432p.

Nelson, D.L. & Cox, M.M. Lehninger Principles of Biochemistry. 8ª ed. W.H. Freeman. 2021. 1248 p.