

PLANO DE ENSINO

I. IDENTIFICAÇÃO	
Unidade Acadêmica: Câmpus Jataí	
Curso:Biomedicina	
Disciplina:Biologia Molecular	
Carga horária semestral:64	Teórica: 48 Prática: 16
Semestre/ano:1/2013	Turma/turno: 1 período/ Integral
Professor (a):Dra. Mônica Santiago Barbosa	-

II. Ementa

Estrutura e Função dos Ácidos Nucléicos. Experimentos que elucidam o DNA como Material Genético. Replicação do DNA. Transcrição do RNA. Síntese de Proteínas e Código Genético. Controle da Expressão Gênica em Procariotos e Eucariotos. Tecnologia do DNA recombinante.

III. Objetivo Geral

- Conceituar Biologia Molecular, destacando seus objetivos, seu inter-relacionamento com outras ciências, sua aplicabilidade e sua importância na área de atuação do Biomédico;
- Proporcionar o desenvolvimento de uma visão clara e atualizada a respeito dos elementos e mecanismos moleculares envolvidos nos processos de armazenamento, transmissão e expressão da informação genética, fornecendo subsídios para a melhor compreensão das modernas técnicas de pesquisa e manipulação genética ao nível molecular.

IV. Objetivos Específicos

- Fornecer os conhecimentos básicos que possibilitem o estudo da hereditariedade e da variação sob o aspecto molecular;
- Entender como a estrutura do DNA pode influenciar a regulação da expressão gênica;
- Estudar o dogma fundamental da biologia molecular que são a duplicação do DNA, transcrição e síntese protéica;
- Entender a regulação da expressão gênica em procariotos e eucariotos;
- Compreender os principais processos biotecnológicos bem como as ferramentas moleculares;
- Desenvolver uma análise crítica sobre a manipulação do genoma e a ética do DNA.

V. Conteúdo

Replicação do DNA

Replicação semiconservativa Mecanismo de replicação Enzimas envolvidas Origens da replicação Fragmentos de Okazaki

Transcrição

Mecanismo de transcrição

Enzimas envolvidas

Splicing

Promotores

Tradução

Mecanismo de tradução

Classes de RNA

Código genético

Degeneração do código genético

Códon e sinalização

Reação em cadeia da Polimerase (Prática e teórica)

Funcionamento da técnica

Uso da PCR

Diagnóstico de doenças pela PCR

Identificação humana pela PCR (Prática e teórica)

Técnicas utilizadas

PCR

RFLP

Sequenciamento

Rt-PCR

Funcionamento da técnica

Uso da rt-PCR

Diagnóstico de doenças pela rt-PCR

Randômica Amplificação de Polimorfismo de DNA (Prática e teórica)

Funcionamento da técnica

Uso da RAPD

Diagnóstico de doenças pela RAPD

Uso na comparação de Similaridade genética

Polimorfismo de Comprimentos de Fragmentos de Restrição (Prática e teórica)

Funcionamento da técnica

Uso da RFLP

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE GOIÁS CÃMPUS JATAÍ

Diagnóstico de doenças pela RFLP

Uso na comparação de Similaridade genética

Eletroforese (Prática e teórica)

Eletroforese em gel de agarose

Eletroforese em gel de poliacrilamida

Visualização de géis

Fatores que interferem a corrida eletroforética

VI. Metodologia

- Aulas expositivas, quadro, giz, projetor multimídia, estudos dirigido, participação no workshopping e aulas práticas em laboratório

VII. Processos e critérios de avaliação

- 1) Avaliações escritas
- 2) Resolução de exercícios
 - ➤ A participação nas aulas (resolução de exercícios) e participação no workshopping, comporá a NOTA DE PARTICIPAÇÃO (NP).
 - ▶ Para fins do cálculo da média final (M_F) serão utilizadas as notas das AVALIAÇÕES ESCRITAS (AE), SEMINÁRIO E PARTICIPAÇÃO (NP), conforme a fórmula:

$$M_F = \left[\frac{AE1 + AE2 + SM + NP}{5} \right]$$

Aprovação: 1°) Média Final ≥ 5,0 e 2°) Freqüência ≥ 75%

VIII. Local de divulgação dos resultados das avaliações

Os resultados serão divulgados em sala de aula e por e-mail da turma.

XI. Bibliografia básica e complementar

ALBERTS, B. et al. Biologia Molecular da Célula. 4. ed. Porto Alegre: Artes Médicas. 2004.

GRIFFITHS, A. J.; MILLER, J. H.; SUZUKI, D.T.; LEWONTIN, R. C.; GELBART, W. M. Introdução à Genética. 8. ed. Rio de Janeiro: Guanabara Koogan, 2006.

JUNQUEIRA, L.C.; CARNEIRO, J. **Biologia celular e molecular**. 8. ed. São Paulo: Guanabara Koogan, 2005.

LEWIN, B. Genes VII. Porto Alegre: Artmed Editora, 2001.

X. Cronograma

Nº da Aula Conteúdo CH T/P

Replicação do DNA Replicação semiconservativa Mecanismo de replicação Enzimas envolvidas

Assessoria de Graduação

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE GOIÁS CÃMPUS JATAÍ

	Origens da replicação	
	Fragmentos de Okazaki	
4	Transariaão	
4	Transcrição	
4	Mecanismo de transcrição	
4	Enzimas envolvidas	
	Splicing	
4		
4	Tradução	
4	Mecanismo de tradução	
4	Classes de RNA	
4	Código genético	
7	Degeneração do código genético	
	Códon e sinalização	
	Codon e smanzação	
4	Reação em cadeia da Polimerase (Prática e teórica)	
4	Funcionamento da técnica	
4	Uso da PCR	
	Diagnóstico de doenças pela PCR	
	Identificação humana pela PCR	
4	Tánico vilia do	
4	Técnicas utilizadas	
	PCR RFLP	
	Sequenciamento	
	Sequenciamento	
	RT-PCR	
	Funcionamento da técnica	
	Uso da RT-PCR	
4	Diagnóstico de doenças pela RT-PCR	
4	Randômica Amplificação de Polimorfismo de DNA	
	Funcionamento da técnica	
	Uso da RAPD	
	Diagnóstico de doenças pela RAPD	
	Uso na comparação de Similaridade genética	

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE GOIÁS CÃMPUS JATAÍ

4	Polimorfismo de Comprimentos de Fragmentos de Restrição	
4 4 4	Funcionamento da técnica Uso da RFLP Diagnóstico de doenças pela RFLP	
4	Eletroforese	
Eletroforese em gel de agarose Eletroforese em gel de poliacrilamida Visualização de géis Fatores que interferem a corrida eletroforética		

Data	Jataí, Clique aqui para digitar texto.	de abril	de 2013.
------	--	----------	----------

Clique aqui para digitar texto.

Profa. Dra. Mônica Santiago Barbosa

Professora Adjunta II de Diagnóstico Molecular e Estágio Supervisionado II
Coordenadora de Estágios Supervisionado do Curso de Biomedicina
Universidade Federal de Goiás – UFG – Campus Jataí
Campus Jataí - Unidade Jatobá