

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL COORDENAÇÃO DO CURSO DE ENGENHARIA CIVIL

1. DADOS DE IDENTIFICAÇÃO DA DISCIPLINA

Unidade		Curso		
Escola de Engenharia Civil		Engenharia Civil		
		_		
Nome da disciplina		Turma	Sub-turma	
Resistência dos Materiais I		A		
Pré-requisitos		Co-requisitos		
Cálculo diferencia e integral III, Mecânica geral I e Física II				
Núcleo da Disciplina (comum / específico / livre)		Natureza da disciplina (obrigatória / optativa)		
Específico		Obrigatória		
Distribuição da carga ho	orária:			
Carga horária total	Carga horária teórica	Carga horária prática	Carga horária semanal	
64	56	8	04	
Início da disciplina		Término da disciplina		
27 de fevereiro de 2012		02 de julho de 2012		
Dia da semana		Horário		
Segunda-feira		09:00 a 10:40		
Quarta-feira		09:00 a 10:40		

Ementa

Tensão e deformação; propriedades mecânicas dos materiais; carregamento axial; flexão; análise de tensões e deformações; deslocamentos em vigas

2. OBJETIVOS

2.a Objetivo geral

Fornecer os conhecimentos básicos da resistência dos materiais através do estudo dos conceitos básicos da mecânica das estruturas, do comportamento mecânico dos materiais e da análise das tensões, deformações e efeitos de temperatura em diversos elementos estruturais.

2.b Objetivos específicos

Fornecer uma visão geral do funcionamento mecânico dos diversos elementos estruturais, do comportamento mecânico dos materiais e da análise das tensões, deformações e efeitos de temperatura em elementos isostáticos e hiper-estáticos carregados axialmente.

Estudar os estados de tensões e deformações e as equações de transformação em elementos infinitesimais.

Estudar as reações, diagramas de esforço cortante e momento fletor em vigas isostáticas, posteriormente, estudar as tensões normais provocadas pelo momento fletor bem como os métodos de cálculo para analisar os deslocamentos verticais em vigas.

Plano de ensino 1/3

3. PROGRAMA CRONOLÓGICO DE EXECUÇÃO

Mês	Dia	Conteúdo	CHT	CHP
			(*)	(*)
fevereiro	27	Introdução	2	
29 5		Equilíbrio Tensão normal e cisalhante	6	
	5 7	Tensão normai e cisamante Tensões normais em barras – Tensões admissíveis	8	
	, 12	Ligações simples	10	
	14	Deformação específica	10	
Março 19 21 26 28	Propriedades mecânicas dos materiais - Lei de Hooke	14		
	_	Coeficiente de Poisson - Estado geral de tensões (Fim do	16	
	21	conteúdo para a P1)	10	
	26	Aplicações e modelos reduzidos		18
	Princípio de Saint-Venant - Deformação axial de um elemento	20	_	
	carregado axialmente			
	30	Primeira prova – P1		
2 4 9 Abril 11 18 23	Elementos estaticamente indeterminados	22		
	Tensões térmicas	24		
	Exemplos	26		
	Vigas isostáticas - Cálculo de reações	28		
	Diagramas de esforço cisalhante e momento fletor	30		
	Exemplos (Fim do conteúdo para a P2)	32		
	25	Deformação por flexão de um elemento retilíneo	34	
	2	Aplicações e modelos reduzidos		36
5 7		Segunda Prova – P2		
		Fórmula da flexão – Diagrama de tensões normais em vigas	38	
Maio	Maio 9	Exemplos	40	
14	Estado plano de tensão - Equações gerais para o estado plano de tensão	42		
	21	Tensões principais e tensão cisalhante máxima – Problema de autovalor - Círculo de Mohr para tensões	44	
23 28 30	Exemplos	46		
	Estado plano de deformações - Estado plano de deformações	48		
	Círculo de Mohr para deformações e Rosetas	50		
4 6 11 13 Junho 18 20 23 25	Exemplos - Aplicações e modelos reduzidos		52	
	6	Linha elástica - Deslocamento de viga pelo método da integração	54	
	11	Exemplos	56	
	13	Deslocamento de viga pelo método das funções singulares	58	
	18	Exemplos	60	
		Aplicações (Fim do conteúdo para a P3)	62	
	23	Terceira Prova – P3		
	Revisão geral	64		
	30	Prova Final – PF		

CHT – Carga horária em aulas teóricas

CHP - Carga horária em aulas práticas

OBS: Ao longo do semestre, o Programa poderá sofrer alterações, acordadas com os discentes, em razão de eventos não previstos inicialmente.

4. ESTRATÉGIAS DE ENSINO

Para que os alunos compreendam os conceitos ensinados, é realizada uma descrição detalhada do funcionamento mecânico dos elementos estruturais usando exemplos que visem descrever casos reais.

Nas aulas são teóricas são mostrados os efeitos físicos que as cargas provocam nas estruturas bem como fundamentos matemáticos necessários para poder calcular as tensões, deformações, esforços, deslocamentos, etc.

Inicialmente é apresentada a teoria do assunto a ser estudado e, a seguir, são desenvolvidos exemplos detalhados de aplicação iniciando com conceitos simples aumentando gradualmente o grau de dificuldade.

Plano de ensino 2/3

^{(*) -} Carga horária acumulada

5. RECURSOS UTILIZADOS

Durante as aulas é utilizado o quadro negro, recursos multimídia e modelos reduzidos para mostrar o comportamento das estruturas analisadas.

Link para o EAD (moodle):

As informações, provas anteriores, trabalho, notas, etc são enviadas através do site do EAD, assim é preciso que cada aluno faça o cadastro respectivo.

http://ead.eec.ufg.br/login/index.php

Disciplina: Resistencia dos materiais I - Turma A -

Senha: rm_a_2010

6. CRITÉRIOS DE AVALIAÇÃO

6.a Descrição dos critérios

- 04 provas, P_1 , P_2 , P_3 e Prova final (PF). Na avaliação final, a primeira prova (P_1) tem peso de 20% e a segunda (P_2) e terceira (P_3) prova têm peso de 35%.
- Trabalho em grupo, que visa avaliar a capacidade do aluno em aplicar os conceitos teóricos de vigas em uma aplicação computacional. O trabalho tem peso de 10% na avaliação final.
- O conteúdo das provas é acumulativo.
- Não há prova substitutiva.
- Será considerada presença. Alunos com menos de 75% de freqüência em sala de aula são reprovados.
- Data das provas:

Primeira prova (P1): 31 de março de 2012 (Sábado) às 08:30 h Segunda prova (P2): 05 de maio de 2012 (Sábado) às 08:30 h Terceira prova (P3): 23 de junho de 2012 (Sábado) às 08:30 h Prova final (PF): 30 de junho de 2012 (Sábado) às 08:30 h.

6;b Composição da nota

• A nota inicial (N1) será dada por:

$$N1 = 0.20 P_1 + 0.35 P_2 + 0.35 P_3 + 0.10 Trab$$

Se N1 >= 7,0 então a nota final será:

$$NF = N1$$

• Senão, a nota final será:

$$NF = \frac{N1 + PF}{2}$$

7. BIBLIOGRAFIA

Básica

- 1. BEER, F.P.; JONSTON, E.R; DEWOLF, J.T., *Resistência dos Materiais*. 4ª ed. São Paulo: McGraw-Hill Interamericana. 2006
- 2. HIBBELER, R.C., Resistência dos Materiais, 5ª. Ed. São Paulo, Prentice Hall. 2004.
- 1. TIMOSHENKO, S. e GERE, J. Rio de Janeiro, Livros Técnicos e Científicos- LTC. 1983.

Complementar

- 1. CRAIG, R. Jr, Mecânica dos Materiais, Rio de Janeiro, Livros Técnicos e Científicos-LTC. 2003.
- 2. GERE, J. Mecânica dos Materiais, São Paulo, Thompson Learning. 2003.
- 1. POPOV, E, Introdução à Mecânica dos sólidos, São Paulo, Edgard Blucher. 1978.

8. DOCENTE(S) RESPONSÁVEL(EIS) PELA DISCIPLINA

Zenón José Guzmán Núñez del Prado

Goiânia, 08 de fevereiro de 2012.

Coordenador do Curso de Graduação em Engenharia Civil Diretor da Escola de Engenharia Docente(s) responsável(eis) pela disciplina

Plano de ensino 3/3