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Resumo

Vitória, Arthur. Supporting Public Health Policy Decisions Through Live
Birth Predictions for Health Regions of Goiás with Machine Learning.
Goiânia, 2023. 45p. Dissertação de Mestrado. Programa de Pós Graduação
em Ciência da Computação, Instituto de Informática, Universidade Federal de
Goiás.

Modelos de previsão de séries temporais estão se tornando cada vez mais comuns em
aplicações de saúde e administração, pois podem ser ferramentas confiáveis de apoio
à decisão. A taxa de nascidos vivos é um índice de saúde diretamente ligado à saúde
materna e neonatal, e sua previsão pode ajudar gestores de saúde a antecipar recursos
para serviços obstétricos e pediátricos. Assim, o objetivo deste trabalho é prever o
número de nascidos vivos no estado de Goiás (Brasil) para um horizonte de 24 meses,
fornecendo informações úteis para apoiar o planejamento e a implementação de políticas
públicas. Este estudo investiga duas abordagens distintas: univariada e multivariada,
permitindo uma melhor compreensão e gestão da hierarquia territorial brasileira. Ambas
as abordagens são avaliadas com dados fornecidos pelo Sistema de Informação sobre
Nascidos Vivos do Departamento de Informação do Sistema Único de Saúde (SINASC-
DATASUS). O conjunto de dados é composto por 252 registros mensais do número de
nascidos vivos para as 18 regiões de saúde de Goiás. Os resultados foram mensurados pela
capacidade de previsão pelo Erro Percentual Médio Absoluto (Mean Average Percentual

Error, MAPE) e Erro Médio Absoluto (Mean Absolute Error, MAE). Para a abordagem
univariada utilizando a LMU, a média de MAPE e MAE alcançada foi de 6,4614 e
19,9136, respectivamente. A abordagem multivariada foi combinada com o método K -
means para agrupar séries temporais similares usando o empenamento dinâmico do tempo
(dynamic time warping) como medida de similaridade, gerando um resultado médio de
5,5985 e 18,1360 para MAPE e MAE, respectivamente.

Palavras–chave

<Aprendizado de Máquina, Predição de Nascidos Vivos, Séries Temporais Uni-
variadas, Séries Temporais Multivariadas>



Abstract

Vitória, Arthur. <Supporting Public Health Policy Decisions Through Live
Birth Predictions for Health Regions of Goiás with Machine Learning>.
Goiânia, 2023. 45p. MSc. Dissertation. Programa de Pós Graduação em Ciência
da Computação, Instituto de Informática, Universidade Federal de Goiás.

The use of forecasting models is becoming even more common in healthcare and adminis-
tration applications because they can be reliable decision support tools. The live birth rate
is a health index that is directly linked with maternal and newborn health, and its predic-
tion can assist health managers to anticipate resources destined for obstetric and pediatric
services. Thus, the objective of this work is to forecast the number of live births in the
state of Goiás (Brazil) for a 24-month horizon, providing useful information to support
the planning and implementation of public policies. This study investigates two distinct
approaches: univariate and multivariate, allowing a better understanding and management
of the Brazilian territorial hierarchy. Both approaches are evaluated with data provided by
the information system on live births of the information department of the single health
system (SINASC-DATASUS). The dataset is composed of 252 monthly records of the
number of live births for the 18 health regions of Goiás. The results were measured in
prediction ability by Mean Absolute Percentual Error (MAPE) and Mean Absolute Error
(MAE). For the univariate approach using a LMU, the average MAPE and MAE achieved
were 6.4614 and 19.9136, respectively. The multivariate approach was combined with the
K -means method for clustering similar time series using a dynamic time warping measure,
generating an average result of 5.5985 and 18.1360 for MAPE and MAE, respectively.

Keywords

<Machine Learning, Live Births Prediction, Univariate Time Series, Multivariate
Time Series>
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CHAPTER 1
Introduction

The live birth rate is an important indicator of the population’s health services,
as it reflects the health and well-being of mothers and newborns. The sustainable deve-
lopment goals (SDGs) established by the United Nations (UN) are a global initiative to
address a wide range of pressing global issues. One of the key issues addressed by the
SDGs is the need to reduce global maternal mortality, which includes deaths related to
complications of childbirth, pregnancy, and postpartum, to 70 deaths per 100,000 live
births [WHO].

Maternal mortality can be classified into two categories: indirect and direct cau-
ses. Indirect causes are those that are related to preexisting diseases, which can be aggra-
vated by physiological changes during pregnancy. Direct causes are related to interven-
tion, omission, or inadequate treatments [Pícoli, Cazola e Lemos 2017]. Furthermore, as
it is registered mostly in the population of developing countries, it is a global public health
concern since most deaths are from direct causes and therefore preventable [BVS].

The Pan American Health Organization (PAHO) reported that globally, about
830 women die every day from direct causes related to pregnancy or childbirth [PAHO].
As the majority of deaths are from direct causes, maternal mortality is an important
indicator of the quality of healthcare for women and is closely linked to access to quality
services, reflecting inequalities that affect underdeveloped countries, where access to
healthcare is often limited [Pinto et al. 2022].

The Brazilian Ministry of Health (MH) reports that the maternal mortality ratio
(MMR) has remained persistently high. In recent years, MMR has seen a significant
increase, rising from 57.9 deaths per 100,000 live births in 2019 to 74.7 in 2020, and
a preliminary estimate of 107.7 in 2021. Additionally, the center-west region of Brazil
has also seen a sharp increase in MMR, with a reported 59.0 deaths per 100,000 live
births in 2019, 77.0 in 2020, and 123.6 in 2021 per 100 thousand live births. However,
2021’s data is still preliminary and subject to change [MH, BrOO]. Additionally, the state
of Goiás has also seen a sharp increase in MMR, with a reported 69.7 deaths per 100,000
live births in 2019 and 90.5 in 2020 [MH].

In Brazil, structuring a regionalized and hierarchical healthcare network such
as macro-region, micro-region, and health regions, allows the characterization based on
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its socioeconomic, demographic, and epidemiological profile of the population with the
identification of priority health problems [LORENA]. Therefore, this structuring of a
hierarchical healthcare network can improve decision-making, and ensure that the right
resources and support are available at the right place at the right time to address specific
health issues of each region, improving the overall health outcomes.

Improving these indicators is essential for the advancement of healthcare servi-
ces provided to the population, as well as effective management is a key aspect of the
improvement of healthcare services. Forecasting the number of live births in a specific
area can play a crucial role in improving maternal and newborn health by enabling the
proactive provision of care and resources for pregnant women, both before and after deli-
very, as well as for newborns.

Statistical and machine learning algorithms are widely used to predict
future behaviors of health indicators, among other areas. While there are ap-
proaches focused on forecasting very specific health conditions such as ischae-
mic heart disease [McGregor, Watkin e Cox 2004] or ischemic stroke development
[Abdullaeva et al. 2019], several works are focused on improving the overall results of
the health services provided to the population [Tomašev et al. 2021, Taloba et al. 2022,
Ashfaq et al. 2019, Vollmer et al. 2021]. Some works use machine learning models
to predict complications in childbirth, preterm birth, and differences in childhood
by birth conditions, among other factors of equal importance to public health
[Zhang et al. 2022, Akazawa e Hashimoto 2022, Neamt,u et al. 2021].

In Adeyinka and Muhajarine [Adeyinka e Muhajarine 2020] approach, machine
learning models were used to forecast the under-five mortality rate (U5MR) in Nigeria
for the next years to help perform policy actions and planning, just like Elhag and Abu-
Zinadah [Elhag e Abu-Zinadah 2020] did with fertility rate in the Saudi Arabic Kingdom.
Statistical methods were also used by Bravo and Coelho [Bravo e Coelho 2020] to predict
births and deaths in Portugal, and by Ribeiro et al. [Ribeiro et al. 2019] who applied them
specifically to forecast tuberculosis incidence in Brazil.

Traditional univariate forecasting techniques are promising for generating
accurate forecasts, but artificial neural networks (ANNs) trained on all availa-
ble time series data in a multivariate approach have shown superior performance
[Hewamalage, Bergmeir e Bandara 2021]. Although the performance of forecas-
ting models may decline when dealing with heterogeneous time series data, stu-
dies have shown that using clustering techniques to leverage cross-series infor-
mation can substantially improve results [Bandara, Bergmeir e Smyl 2020]. This is
particularly true when dealing with diverse time series data, as demonstrated in
various studies [Alvarez et al. 2010, Dantas e Oliveira 2018, Hartmann et al. 2015].
This is a difficult task given the territorial dimension and socioeconomic diver-



12

sity present in different regions’ time series data [Albuquerque et al. 2017]. Cluste-
ring strategies can improve cross-series information, which not only can improve
the model performance, but also boost its generalization ability. There has been
an increase in the use of these state-of-the-art methodologies for health approa-
ches [Cassetti et al. 2008, McCloskey e Poon 2017, Orlandic, Valdes e Atienza 2021],
being widely used with traditional unsupervised learning techniques, such as k-means
[Aguiar et al. 2022, Imtiaz et al. 2020, Wang et al. 2018].

This work proposes the forecast of the live birth rate for the 18 health regions
of the state of Goiás using both univariate and multivariate approaches. The child and
maternal mortality rates of the state of Goiás for 2020 were 11.26 per 1,000 live births
and 89.47 per 100,000 live births, respectively, while Brazil’s rates for the same year were
11.51 child deaths per 1,000 live births and 71.94 maternal deaths per 100,000 live births,
which highlights the state’s necessity to implement action plans to reduce these numbers,
especially MMR, which is above the national rate. The potential of these two approaches
allows the study of how the territorial hierarchy can be better understood and managed.



CHAPTER 2
Related Works

Several authors have proposed research studies that utilize both statistical
methods and machine learning techniques to forecast health indicators. The task of pre-
dicting different health indicators is commonly accomplished using models such as au-
toregressive integrated moving average (ARIMA), exponential smoothing (ETS), and ar-
tificial neural networks (ANN). Statistical and machine learning models were used to
predict the under-five mortality rate (U5MR) in Nigeria for the next years to help perform
policy actions and planning by Adeyinka and Muhajarine [Adeyinka e Muhajarine 2020],
just like Elhag and Abu-Zinadah [Elhag e Abu-Zinadah 2020] did with fertility rate in
the Saudi Arabic Kingdom. Statistical methods were also used by Bravo and Coelho
[Bravo e Coelho 2020] to predict births and deaths in Portugal, and by Ribeiro et al.
[Ribeiro et al. 2019] who applied them specifically to forecast tuberculosis incidence in
Brazil.

Adeyinka et al. [Adeyinka e Muhajarine 2020] compared the performances of
ARIMA, Holt-Winters exponential smoothing (HWETS), and group method of data
handling (GMDH) type artificial neural networks (ANN) in forecasting Nigeria’s under-
five mortality rate (U5MR) using historical annual data from 1964 to 2017, obtained from
the World Bank website. The study conducted two experiments: in-sample prediction
(1964-2017) and out-of-sample prediction (2018-2030). Results indicated that GMDH-
type ANN was more suitable for long-term forecasting, achieving a Root Mean Squared
Error (RMSE) of 0.09. In contrast, ARIMA and HWETS had RMSEs of 0.23 and 2.87,
respectively.

Elhag et al. [Elhag e Abu-Zinadah 2020] showed that using 60 years of annual
data (1960-2019) from the WHO as input for a multilayer perceptron (MLP) model, it is
possible to predict Saudi Arabia’s fertility rate for the next five years with a mean absolute
percentage error (MAPE) of 2.48%, outperforming the forecasting accuracy of single
exponential smoothing (SES) and autoregressive integrated moving average (ARIMA)
models.

Bravo and Coelho [Bravo e Coelho 2020] investigated the effectiveness of Sea-
sonal ARIMA (SARIMA), HWETS, and ETS in predicting births and deaths by sex for
the 25 Portuguese Territorial Units Nomenclature 3 (TUN3) regions over a 12-month ho-
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rizon. The ETS model performed best in predicting births, achieving a weighted average
mean absolute percentage error (MAPE) of 7.83% for females and 7.52% for males from
2014 to 2018. On the other hand, SARIMA produced the best results for deaths, with a
weighted average MAPE of 8.25% for females and 7.35% for males for the same period
as births.

Huang et al. [Huang et al. 2020] proposed using the Legendre Me-
mory Unit (LMU) architecture, introduced by Voelker, Kajić, and Eliasmith
[Voelker, Kajić e Eliasmith 2019], to predict mean aortic pressure. They found that
the recurrent neural network (RNN) approach using LMU outperformed other models,
including Long Short-Term Memory (LSTM) and Transformers, achieving a RMSE of
1.837.

Makipaa [Mäkipää 2021] employed the Facebook Prophet model to predict next-
day critical patient admissions at Tampere University Emergency Department Acuta,
with the aim of facilitating resource allocation. The model achieved a MAPE of 6.57%,
making it the second-best model among other studies that used the same dataset. In a prior
investigation, Tuominen et al. [Tuominen et al. 2021] also used the same dataset and task
to compare the performances of SARIMA, Prophet, and the general linear model. Among
the three models, Prophet showed the best performance, achieving a MAPE of 6.7% in
the univariate approach.

Ribeiro et al. [Ribeiro et al. 2019] employed Simple Exponential Smoothing
(SES), ARIMA, and HWETS to forecast tuberculosis incidence in Brazil between July
2018 and December 2018. The authors trained these models using data acquired from DA-
TASUS, which included 210 monthly records of tuberculosis diagnoses ranging from Ja-
nuary 2001 to June 2018. The results indicated that HWETS outperformed both ARIMA
and SES, achieving a MAPE value of 4.00%, while ARIMA and SES achieved MAPE
values of 4.84% and 6%, respectively.

Recent research has focused heavily on time series analysis and clustering
methods to group time series based on their similarities for complex purposes. In a study
by Gómez-Losada et al. [Gómez-Losada, Pires e Pino-Mejías 2018], various statistical
clustering techniques were evaluated to estimate the level of background air pollution
in urban areas, the characteristics of pollutant concentrations, and the duration of their
presence over several years.

James et al. [James e Menzies 2020] proposed a statistical clustering method
that evaluates the performance of parametric and nonparametric analyses to analyze the
evolution of multivariate time series, with the goal of using a dynamic and simplified
implementation of cluster analysis to scale worldwide COVID-19 infections. Meanwhile,
Luczak et al. [Łuczak e Kalinowski 2022] utilized a fuzzy clustering method to identify
changes in the epidemiological situation of COVID-19 across European countries.
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Piryatinska et al. [Piryatinska et al. 2009] proposed a technique for analyzing
the level of dysmaturity in newborns by analyzing sleep stages based on extensive EEG
records. Their approach clusters nonstationary time series data produced by the EEG
signal to provide a more accurate assessment.

Aguiar et al. [Aguiar et al. 2022] introduced a Deep Learning-based prediction
strategy, the CAMELOT model, to cluster multivariate time series data from Electronic
Health Records (EHR). The model architecture consists of three stages: first, the input
time series are represented using an RNN-based encoder network with an attention layer;
second, the clusters are selected and identified using an MLP; and third, the predictions
are made using another MLP. The authors evaluated the performance of CAMELOT in
comparison with other prediction algorithms, such as Support Vector Machine (SVM),
XGBoost (XGB), and NEWS2, and found that CAMELOT outperformed them by at least
4% in interpretability metrics in cluster formation.

Imtiaz et al. [Imtiaz et al. 2020] introduced a federated learning model based on
Long-Short Term Memory (LSTM) for predicting user privacy preservation in a health
data stream. The model uses multivariate time series data from MyFitnessPal apps, Fitbit
dataset, and Fitbit-GAN dataset, and implements a clustering mechanism using a K -means
streaming algorithm and pattern matching to group users with similar health and diet
profiles. The LSTM model achieved results that were within 0.025% of the reference
values, and the clustering approach significantly reduced computational time, resulting in
up to 49% error reduction compared to the model for the entire dataset.

Gonzalez et al. [González 2019] also employed federated learning with an LSTM
in a clustering mechanism using agglomerative clustering algorithms. Their study used
telecom operator customer data to generate monthly time series observations. The study
was effective in exploring similar time series and showed better prediction metrics when
using clusters.



CHAPTER 3
Background

3.1 Time Series Forecasting Problem

A time series is a collection of values that are ordered chronologically and
observed over a period of time, where the data are typically sampled at regular intervals
with a fixed frequency. Approaches to time series forecasting can be either univariate
when there is only one time-dependent variable, or multivariate when there are multiple
time-dependent variables.

A univariate time series with L values in the historical data can be defined as:

y = y (t −L), . . . ,y (t −1), y (t), y (t + 1), . . . , y (t + h) (3-1)

where, each y = t− i , for i = 0,1, . . . ,L, represents the recorded values of y at time t− i . The
forecasting process consists of estimating a horizon of prediction, denoted as h, which
refers to the number of predicted time steps ahead of y (t). Given a desired horizon of
predictions h, the forecasting process involves estimating h values ahead of y (t), that is
ŷ (t + i), where i = 1, . . . ,h. The optimal predicted values are reached when the function

∑
h
i=1 (y (t + i)− ŷ (t + i)) is minimized. The univariate approach is also demonstrated in

Figure 3.1.
A multivariate time series forecasting approach can be represented as a method

for predicting the h values ahead of yi (t), with i = 0,1, . . . , h, of T time series simultane-
ously, and is described in the matrix form in Equation (3-2).


y1

y2
...

yn

 =


y1(t −L), . . . , y1(t −1) , y1(t), y1(t + 1), , . . . , y1(t + h)

y2(t −L), . . . , y2(t −1) , y2(t), y2(t + 1), , . . . , y2(t + h)
...

yn(t −L), . . . , yn(t −1) , yn(t), yn(t + 1), , . . . , yn(t + h)

 (3-2)

where n = 1,2, . . . ,T represents the total number of time series that will be modeled. The
same process is illustrated in Figure 3.2.
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Figure 3.1: Univariate time series forecast problem

Figure 3.2: Multivariate time series forecast problem

3.2 Time Series Clustering

Time series clustering can be used to discover the distribution of patterns in data
by organizing data points into paired groups based on their similarities. The challenge of
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clustering time series lies in the fact that each data point is an ordered sequence, however,
making clusters of similar time series may improves forecast accuracy and optimize
the computational time of training. Clustering algorithms are mostly based on distance
measures to find similar attributes between the data used.

3.2.1 K -means

According to Forsyth [Forsyth 2016] K -means is a technique capable of creating
groups or clusters by measuring the similarity between samples in a dataset. Calculating
the distance between samples can determine how similar they are to one another. This
distance usually is defined by the Minkowski distance [Kamber, Pei et al. 2001], which is
a generalization of Euclidean and Manhattan distances:

d(xi ,xj ) =
(
|xi1 − xj1|g + |xi2 − xj2|g + . . .+ |xip − xjp|g

)1/g (3-3)

Given a dataset X , clustering is the process of creating multiple groups
(C1,C2, . . . ,Ck ) in which the samples represented therein have a high similarity to each
other and a higher dissimilarity between different groups [Kamber, Pei et al. 2001]. The
points representing each group are called the centroid [MacQueen 1967]. Centroids are
given by the mean vector of Ck [Maimon e Rokach 2005]:

µk ,j =
1

Nk
∑

∀xiϵCk

xi ,j (3-4)

To obtain the groups, first, the number of groups K must be defined, then all
samples are assigned to the nearest centroid and then the centroids are calculated again.
This process is repeated until the algorithm finds a convergence [Maimon e Rokach 2005,
Selim e Ismail 1984].

Figure 3.3: Clustering after K -means convergence.

The sum of squared error (SSE) is the simplest and most common method for
evaluating groups formed by the K -means [Maimon e Rokach 2005] algorithm and is
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calculated by:

SSE =
k

∑
i=1

∑
∀xiϵCk

||xi −µk ||2 (3-5)

3.2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is invariant to time changes and insensitive to
abnormal points, making it very important for work involving time series clustering.
Some works highlight the use of DTW measurement for time series clustering cases
[Keogh e Ratanamahatana 2005, Petitjean et al. 2014, Müller 2007]. The calculation of
the DTW distance measure combines and maps the morphology of the time series by
bending the time axis with respect to time data points, and then elastic transformations
are made to find optimal nonlinear alignment between different time series sequences. An
example of how it is calculated is illustrated in Figure 3.4, where these matching closer
points are calculated through the distance matrix calculated by Equation (3-7).

Figure 3.4: Time matching of the data based on the DTW alignment.

Considering two time series O = o1,o2, · · · ,oi , · · · ,on and P =

p1,p2, · · · ,pj , · · · ,pm. A n-by-m matrix is allocated to store the distance points of any
two pairs of values of the time series O and P. Thus, aligning two points to the (i th, j th)
element of the matrix will contain the distance corresponding to d(oi ,pj ) = (oi −pj )2. The
home element (i ,j) of the matrix is represented by an alignment between two points in
the time series, as seen in Figure 3.4. The path L is a set of matrix elements that defines
a mapping between O and P so that we find the best match between the two sequences.
Thus, we will have:

L = l1, l2, . . . , lk ,max(n,m) ≤ k < (m + n−1), (3-6)
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where the l th element of L is being defined as lk = (i , j)k . The path that minimizes the
warping cost for the aligned points is defined by:

DTW (O,P) = min

(√
K

∑
k=1

lk

)
(3-7)

and therefore, the DTW distance can be represented by:

γ(i , j) = d(oi ,pj ) + min{γ(i −1, j −1),

γ(i −1, j),γ(i , j −1)}
(3-8)

Recursively, similarities between time series and cumulative distance patterns
γ(i , j) are measured using the current distance d(i , j) and the minimum of cumulative adja-
cent distances. Thus, by providing the desired number of clusters, the method calculates
the optimal cluster based on the shortest distance of the distance matrix n-by-m.

3.3 Artificial Neural Networks - ANNs

ANNs are inspired by our biological understanding of the human nervous system
[Lippmann 1987]. ANNs have a structure that allows information to be received and then
associated with responses, by means of a highly connected system based on neurons,
its basic unit [Oliveira 2010]. The idea of an artificial neuron was first proposed by
[McCulloch e Pitts 1943], as can be depicted in Figure 3.5. Subsequently, McCulloch’s
artificial neuron model culminated in the design of the Perceptron [Rosenblatt 1958] and
Adaline [Widrow e Hoff 1960].

Figure 3.5: Model of an artificial neuron [McCulloch e Pitts 1943].

Each input value in the neuron is associated with a weight wi that will reflect the
importance of this input to the output yj . The output of perceptron can be represented by
Equation (3-9), where a threshold τ is subtracted from the linear combination between the
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inputs and their respective weights, if the result is ≥ 0 then y = +1 and y = −1 otherwise.
It is only possible to solve linearly separable problems [Lippmann 1987, Rauber 2005].

yj = σ

(
p

∑
i=1

wixi −τ

)
(3-9)

The potential and flexibility of the computations performed in a neural network
comes from the creation of a set of interconnected neurons. An ANN can be referred to as
a feedforward network because received information is propagated in a single direction,
thus allowing information to flow forward only [Rauber 2005].

Neurons that receive information simultaneously are organized in layers. The
most common form of an ANN is one with multi-layer perceptrons (MLP). As can be seen
in Figure 3.6, an MLP network has an input layer, composed of neurons that just propagate
information, an output layer, composed of neurons that will determine the output yk for a
given input, and all the layers that are between the input and output layer are described as
hidden layers [Lippmann 1987, Oliveira 2010].

Figure 3.6: MLP Representation by [Rumelhart, Hinton e Williams 1985].

An MLP network with a fixed number of neurons in the hidden layer is capable
of approximating a wide range of functions. The process of training an MLP net can be
supervised, where a set of training data with corresponding outputs is required to enable
learning. Training an MLP network is the process by which the values of the weights are
determined so that the network can generalize to new data. In other words, the weights
wi are adjusted to minimize the error value, which is the difference between the predicted
output and the true output for a given input [Gardner e Dorling 1998].

Through an backpropagation algorithm the neural network is able to adjust
the weights w based on the error ε between predicted and true outputs. The algorithm



3.4 Legendre Memory Unit - LMU 22

determines the direction of decreasing ε by computing the gradient defined in Equation
3-10. To minimize ε, the weights are updated in the direction of negative gradient −▽ε,
with the magnitude of change determined by a predefined learning rate η, as given by
Equation 3-11 [Rauber 2005].

▽ε(w) =
∂ε(w)
∂w

(3-10)

wi+1 = wi −η▽ε (3-11)

3.4 Legendre Memory Unit - LMU

The LMU model is an recurrent neural network (RNN) architecture constituted
mainly by a Linear Time-Invariant (LTI) system and a nonlinear dynamical system. The
first system is a memory cell responsible for orthogonalizing a sliding window of length
θ of the encoded input ut , shown in Equation (3-12), storing this information through
a linear combination of scale-invariant Legendre polynomials mt , whose definition is
presented in Equation (3-13). The second system applies a nonlinear function f to a linear
combination of the input vector xt , the memory vector mt and the hidden state vector ht

and its respective weight matrices Wx , Wm and Wh. Then, the hidden state output of one
time-step iteration of LMU is demonstrated in Equation (3-14),

ut = eT
x xt + eT

h ht−1 + eT
mmt−1 (3-12)

mt = Āmt−1 + B̄xt (3-13)

ht = f (Wxxt + Wmmt + Whht−1) (3-14)

where Ā and B̄ are discretized matrices generated by Equation (3-15) and Equation (3-16),
and d is the order of the system and size of the mt :

A = [a]ij ∈ Rd×d , aij = (2i + 1)

(−1) i < j

(−1)i−j+1 i ≥ j
(3-15)

B = [b]i ∈ Rd×1, bi = (2i + 1)(−1)i , i , j ∈ [0,d −1] (3-16)

The architecture of the LMU cell is then based on its parameters and systems.
As time steps pass through, the cell functions in a self-looping process, which is the agent
that keeps temporal data stored in the cell. This recurrent relation is illustrated in Figure
3.7.
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Figure 3.7: LMU cell in one-time-step according to [Voelker, Kajić e Eliasmith 2019].

The memory’s parameters A, B, and θ, like in Voelker, Kajić, and Eliasmith
[Voelker, Kajić e Eliasmith 2019], are not required to be learned, hence they were not
trained, keeping their values frozen along the training process. On the other hand, the
encoding vector of weights ex , eh, and em and the weight matrices Wx , Wm, and Wh are
learned throughout the proceeding.

The fact that the linear system is decoupled from the nonlinear system ensures
the possibility to trade between the order parameter (d), which when augmented improves
the linear memory capacity, and the hidden state size parameter (n), which when increased
enhances the memory’s ability to learn nonlinear complex functions.

One of LMU’s biggest advantages is that it approaches the exploding and
vanishing gradients, that’s usually a problem in RNN models, allowing it to handle long-
range temporal dependencies, contemplating around 100,000 time steps. It also proves
to converge quickly using fewer internal state variables when compared to other RNN
models.



CHAPTER 4
Live Births Prediction for Health Regions of
Goiás with Machine Learning

The following sections will present the methodology of the proposed approaches,
comprising a detailed description of data collection and preprocessing methods, as well
as an explanation of the forecasting and evaluation strategies employed in the subsequent
chapters. Additionally, the methodology here presented was used in two case studies
(Chapter 5 and Chapter 6), where each one is one submitted paper.

4.1 Data Collection

The Brazilian population’s heterogeneity in terms of socioeconomic, demo-
graphic, and epidemiological profiles can be addressed by systematizing a hierarchical
healthcare network consisting of macro, micro, and health regions [LORENA]. This ap-
proach allows for the adaptation of health services and resources to the unique needs of
specific geographic areas, ensuring that each region receives the appropriate level of care
based on its distinct profile [Viana et al. 2015].

Goiás, located in the mid-western region of Brazil, has a large population and is
one of the states that places a strong emphasis on efficient government decision-making
to improve public health indicators. As the 12th most populous state in Brazil, with an
estimated population number of 7,206,589 inhabitants, as reported by the lasted demo-
graphic census published by the Fundação Instituto Brasileiro de Geografia e Estatística
(IBGE), Goiás faces significant challenges in ensuring the health and well-being of its po-
pulation. Effective and well-coordinated efforts are necessary to address the unique needs
and requirements of such a large and diverse population, and to achieve positive health
outcomes across the state.

This work analyzes the 18 health regions of the state of Goiás, shown in Figure
4.1, and utilized data on live births from 2000 to the end of 2020, with a monthly
resolution. These data were provided by the information system on live births of the
information department of the single health system (SINASC-DATASUS). The Brazilian
DATASUS is an agency that manages health information, such as records and information
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processing, and financial information referring to public resources, credits, and budgets
directed to health. The dataset is organized into 252 observations distributed monthly for
the number of live births from january 2000 to december 2020 for each health region
in the state of Goiás, resulting in a total of 18 unique time series data. This dataset is
restricted to 2020 data as the information for the subsequent years is being compiled and
may change. The data history of all health region time series can be seen in Figure 4.2.

Figure 4.1: State of Goiás divided into 18 health regions.

Between 2010 and 2018, the number of live births increased in Brazil, with
a slight decrease in 2017 associated with alerts caused by the Zika virus epidemic,
which can cause fetal malformation [Castro et al. 2018]. However, after 2018, a reduction
in live births was observed, possibly related to changes in the socioeconomic profile
of the population [Duarte e Teixeira 2021]. In 2020 was a significant decrease in the
total number of births, as many women opted to delay pregnancy due to the high
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Figure 4.2: Number of live births and date in monthly time spans for all health regions of
the state of Goiás, Brazil.

incidence of SARS-CoV-2 virus infections and the associated risk of maternal mortality
[Souza e Amorim 2021].

4.2 Data Preprocessing

To adjust the data on a common magnitude scale and provide more effective
weight adjustments for neural networks, the data is normalized and scaled. This helps en-
sure that the data are uniformly scaled, allowing the model to learn the underlying patterns
and relationships in the data [Hewamalage, Bergmeir e Bandara 2021]. The preprocessing
step occurs according to Equation (4-1)

Xt =

(
xt −min(x)

max(x)−min(x)

)
· (max −min) + min (4-1)

where xt represents a time serie sample at time step t , while Xt represents the same
sample after preprocessing. min(x) and max(x) are the lowest and highest value of a series,
respectively. Finally, max represents the highest desired value, which in this case is set to
1, while min represents the lowest desired value, set to -1.
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4.3 Sliding Window

Given that the forecasting problem requires making predictions for multi-
ple time steps in advance, the sliding window (SW) strategy has been adopted.
This approach involves using a moving window of historical data to train the mo-
del, where the window size corresponds to the number of time steps to be predicted
[Hewamalage, Bergmeir e Bandara 2021]. That means, the SW is used in order to split
the samples into pairs of x(t) and y (t), as illustrated in Figure 4.3.

Figure 4.3: Representation of a moving window training strategy.

Both input samples, denoted as x(t), and output samples, denoted as y (t), has
been defined to be of size 24. This means, that for each time step the model has 24
consecutive data points to predict the next 24 data points. It was defined 24-month outputs
to provide a sufficient planning horizon for health managers and accommodate potential
delay of official information in SINASC-DATASUS. That means that the trained model
will be able to generate a 2-year prediction. By predicting outcomes up to two years in
advance, the model can support proactive decision-making and mitigate the impact of any
delays or data reporting issues. The input size was set to match the output size to enable
the model to learn the complexity required for long-range prediction.

The SW is also used to generate two years of predictions. As depicted in Figure
4.4, at step zero the most recent 24 months of recorded data is gathered, which will be
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model’s first input. Since the model is expected to produce 24 outputs at each step, only
the first prediction is taken. In this way, an accumulative error from the last predictions
is considered at each step to generate the next predictions and so on, until h = 24.
Resulting predictions are then evaluated against the ground truth data using MAPE and
MAE metrics, which have been selected as they provide reliable evaluation strategies for
forecasting models.

Figure 4.4: Representation of a prediction over prediction strategy.

4.4 Performance Measures

The proposed methodologies presented in the next chapters use the same evalu-
ation strategies, namely, mean absolute percentage error (MAPE), described in Equation
(4-2), and mean absolute error (MAE), described in Equation (4-3), as they have been
widely used in the literature and provide a comprehensive evaluation of the forecast per-
formance.

MAPE =
1
n

n

∑
i=1

|yi − ŷi |
yi

∗100 (4-2)

MAE =
1
n

n

∑
i=1

|yi − ŷi | (4-3)



CHAPTER 5
Case study I: Live Births Prediction using
Legendre Memory Unit: A case study for the
health regions of Goiás

Although traditional univariate techniques such as ETS and ARIMA may not
always perform well in capturing the complexity and dynamics of real-world data, they
are still widely used due to their simplicity of implementation and understanding. Additio-
nally, they provide a straightforward approach for modeling time series data, which can be
useful in situations where computational resources or data availability is limited. Despite
the recent successes of RNNs in forecasting, there are currently no established guidelines
on when traditional statistical methods will outperform RNNs, even when developing and
adapting complex RNN models [Hewamalage, Bergmeir e Bandara 2021].

In this context, the LMU model is explored in this chapter. This novel recurrent
architecture has achieved state-of-the-art memory capacity tasks and performs more
efficiently than other models [Voelker, Kajić e Eliasmith 2019]. Additionally, results for
statistical models such as ARIMA, ETS, and Prophet are reported, these models are
optimized in the same way that LMU. Chapter 3 presents the model description, while
Chapter 4 demonstrates how the data is collected and processed to fit into the model.

Furthermore, the model was optimized using a grid search strategy, where the
hyper-parameters considered in the process are mentioned in Table 5.1. The selection of
these parameters was determined by prior experiments and available resources capability.
This optimization procedure is essential for identifying the hyperparameters that best suit
each region and for preventing overfitting of the model.

The search space for batch size consisted of 8, 16, 32, and 64, while the number
of epochs was set to 500. Setting the number of epochs to 500, and a patience of 50
epochs provides a sufficient amount of training time for the model to learn the underlying
patterns and relationships in the data without overfitting. This approach allowed the model
to stop training when performance improvement began to plateau. Additionally, since
some parameters of LMU are randomly initialized, such as kernel matrices and encoders,
the seed was also changed along the optimization. It was done to guarantee that the model
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Table 5.1: LMU’s hyper-parameters and its search space.

Parameter Search Space and frozen values

Order (d) [32, 64, 128, 256]
Hidden state size (n) [32, 64, 128, 256]

SW size (θ) [24]
Batch size [8, 16, 32, 64]

Epochs [500]
Patience [50]

Seeds [10, 42, 58, 3407]

was stable independently of the stochastic initialized parameters.
Finally, the optimizer used was the Continuous Coin Betting (COCOB), which

is a recent stochastic gradient descent algorithm proposed by Orabona and Tommase
[Orabona e Tommasi 2017], who affirm in their work that the optimization process is
reduced to a game of betting on a coin. The main advantage of this optimizer is that it
self-tunes the learning rate, which is why it is not included in the grid search procedure.
COCOB has gained popularity once it eliminates the need to optimize the learning
rate and it proves to perform better in time series forecasting in state-of-the-art papers
[Hewamalage, Bergmeir e Bandara 2021, Bandara et al. 2021].

5.1 Experimental Results

The total number of optimization tryouts for LMU was 64 for each region,
resulting in 1,152 combinations considering the 18 regions. Figure 5.1 shows results
for all 18 health regions, where the best model configuration is used to generate the
predictions. Additionally, the results of all evaluated models are represented in Table 5.2.

In Table 5.2 it is evidenced MAE and MAPE results for LMU, ARIMA, Prophet,
and ETS models considering each health region separately and the state’s mean. Additi-
onally, there is also the live births mean for each region from 2019 to 2020. From that, it
is noticeable the correlation between LMU’s performance and the live births mean. The
model achieved better error metrics in health regions with higher live births mean and
only reasonable performance in regions with lower live births mean. This behavior was
also seen in Bravo and Coelho [Bravo e Coelho 2020] when predicting births and deaths
for Portugal’s TUN3 using only statistical models.

The results for the state of Goiás showed that ARIMA achieved the best overall
MAPE. Accordant to the observed in the related works section, ARIMA is one of the most
used models for time series forecasting and the results presented in this work prove that it
also fits well in the scenario of live births. While LMU achieved a slightly lower MAPE
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Figure 5.1: Results of the univariate LMU applied to all health regions of Goiás.

than ARIMA, LMU reached the best overall MAE. These results suggest that LMU is a
highly effective approach for modeling such data and offers a competitive alternative to
traditional statistical models such as ARIMA.

Furthermore, it can also be seen that most of the health regions where ETS and
ARIMA overcame LMU were regions with lower live births mean. This happens due to
the fact that statistical models need less amount of data to train compared to machine and
deep learning methods, such as LMU. For data from low live births regions, it is harder
to express the health attributes in comparison to high live births regions. Hence, the 252
samples of these regions may have been enough for statistical models to learn better than
LMU, which may need more data to fit better the live birth rate for these locations.
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Table 5.2: Live births mean and error metrics for each health region and state with all
models evaluated on 2019-2020 forecast.

Health region Live births mean ARIMA Prophet ETS LMU

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Central 2149 82.4479 3.7940 119.4458 5.4865 128.6836 5.7422 81.3121 3.7630
Estrada de Ferro 327 17.3135 5.3292 18.4363 5.8751 19.3445 5.6765 17.6482 5.6295
North 142 9.1326 6.4177 12.1325 8.5205 9.5333 6.6195 9.7638 7.1731
North Surroundings 313 19.8791 6.0833 18.3211 5.8478 26.8542 7.9628 15.5576 5.0142
Northeast I 53 6.1999 11.1708 5.8825 11.5876 4.8953 8.9647 6.5262 12.8202
Northeast II 117 10.6430 9.3465 10.2323 8.3717 9.3436 8.0597 9.5880 7.8834
Pirineus 628 23.3633 3.7147 32.2141 5.0747 29.7174 4.6125 24.4367 3.7843
Rio Vermelho 210 27.4492 11.7839 21.4760 9.8399 47.2651 18.5988 22.0541 10.2840
São Patrício I 170 11.6243 6.6171 13.4162 7.5975 12.0453 6.9699 12.2117 7.1695
São Patrício II 195 12.3725 6.3453 16.1416 8.1900 10.9664 5.7232 13.7203 7.0622
Serra da Mesa 124 10.9499 8.7926 11.4358 9.5512 11.0501 9.0740 10.3866 8.5684
South 269 11.0334 4.0559 13.1251 5.0129 11.5999 4.2193 9.9294 3.8154
South Surroundings 1065 35.4194 3.3777 50.0397 4.6028 32.9006 3.1557 36.5511 3.3959
South-Center 1077 33.5097 3.1078 58.1816 5.4811 55.0561 4.9244 31.2450 2.9627
Southwest I 514 23.4386 4.4926 34.1443 6.5823 27.0962 5.0913 23.2684 4.3728
Southwest II 281 12.4981 4.4788 18.8340 6.8762 18.3881 6.2626 13.9953 5.0357
West I 113 6.4814 5.7596 9.4666 8.4516 6.2235 5.4391 8.0232 7.2046
West II 121 12.2170 9.7636 13.3485 11.9695 11.8608 9.5868 12.2266 10.3658

Goiás** 437 20.3318 6.3572 26.4597 7.4955 26.2680 7.0380 19.9136 6.4614

* - Best result of five random seed initialization
** - Average of the results of the health regions



CHAPTER 6
Case study II: Live Births Forecasting Across
Health Regions of Goiás using Artificial Neural
Networks: A Clustering Approach

Although univariate forecasting has been shown to be highly effective for
modeling time series data, many researchers have also explored the potential bene-
fits of leveraging cross-series information in their forecasts. This approach has gai-
ned popularity in recent years and has been used in a wide range of forecasting ap-
plications [Aguiar et al. 2022, Imtiaz et al. 2020, Wang et al. 2018, Imtiaz et al. 2020],
rather than developing separate local models for each time series in a dataset, a
global model is trained by leveraging data from multiple time series simultaneously
[Hewamalage, Bergmeir e Bandara 2021]. Although global models can be applied to a set
of time series, this does not mean that the series’ forecasts are dependent on one another.
Instead, this method entails estimating parameters for all of the available time series si-
multaneously. [Januschowski et al. 2020, Hewamalage, Bergmeir e Bandara 2021].

The idea of building global models was enhanced in this study by incorporating
the concept of clustering similar time series, which allows the model to explore temporal
similarities between cross-series information. In this way, all 18 health regions’ data were
clustered based on their similarities, which means that each cluster had the most similar
health regions’ time series.

A global model was trained for each cluster, and different numbers of clusters
were tested to see the benefits of clustering similar time series. The K -means was used
for clustering the most similar health regions’ data, with K = 1,2, . . . ,6, using DTW as
a distance metric. The proposed ANN-based approach is multivariate [Reinsel 2003],
where K models are trained to generate results for each of the health regions. The input
and output layer corresponds to the number of clustered time series and the length of
the prediction horizon. For the training set, the SW strategy is used in order to sample
sequence values into a pair of input and output data, using a principle of multi-input multi-
output [Hewamalage, Bergmeir e Bandara 2021]. Table 6.1 shows the hyperparameters
and the range of values used for performing grid search greedy optimization. As an
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optimizer for the training algorithm the continuous coin betting optimizer (COCOB)
[Orabona e Tommasi 2017] is used.

Table 6.1: Hyper-parameters Optimization of ANN.

Parameter Search Space

Hidden Layers 1,2,3
Number of Neurons 50, 150, 200

Batch Size 32, 64
Epoch 500
Seed 10, 3407

6.1 Experimental Results

The proposed methodology uses K -means for clustering time series of health
regions in the state of Goiás. The clusters generated by K -means will be used as input
to train and test MLP model. In this case, a study was carried out with time series of all
health regions in the state of Goiás to determine values of K for better prediction using
MLP. Figure 6.1 shows the relationship of K with MAPE generated by MLP prediction.
Note that the best MAPE and K relationship was obtained for K = 2 on average. Thus,
K = 2 was adopted to generate all clusters using K -means for MLP input for all health
regions. Additionally, the silhouette score is calculated for each value of K to measure
the similarity of each time series to its own cluster in comparison to other clusters. The
optimal number of clusters can be chosen by selecting the value of K that maximizes the
silhouette score. The silhouette score for each value of K is shown in Figure 6.2, and it
can be observed that the highest score of 0.7622 was obtained for K = 2.

Figure 6.1: MAPE versus K for health regions of the state of Goiás.

Figure 6.3 shows the prediction results obtained from two global models trained
on two clusters of time series, for 18 health regions in the state of Goiás, using an MLP.
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Figure 6.2: Silhouete scores for K = 1,2, . . . ,6.

A visual inspection of the graphs in Figure 6.3 reveals that the proposed methodology
closely aligns with the actual series for all health regions, with no significant discrepancies
being visually evident. Table 6.2 presents MAE and MAPE values for the proposed
approach, ETS, and Prophet models. In most health regions, the proposed approach is
better in terms of MAE and MAPE. The ETS is better than the proposed approach for
Northeast I, North, and São Patricio II health regions. Prophet does not show better results
for any health region. The hypothesis for ETS to overcome the proposed methodology
is that Northeast I, North, and São Patrício II health regions are health regions with a
smaller population than other regions. ETS is a time series forecasting method that does
not require as much data for training as an MLP model. Smaller populations may not
have all the health characteristics that larger regions do, which could negatively impact
the MLP’s learning process. The graphs in Figure 6.3 show that the time series of the
Northeast I health region ranges from 46 to 70, while that of North ranges from 100 to 160,
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and São Patrício II ranges from 160 to 220. On the other hand, the Central Health Region,
one of the largest, ranges from 1800 to 2400, while the South Surrounding region ranges
from 1000 to 1200. The analysis suggests that MLP models, which require a large volume
of data (features) for training and testing, are more suitable for larger health regions, that
have a greater diversity of features.

Figure 6.3: Results of the multivariate MLP applied to all health regions of Goiás.
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Table 6.2: Results of MAE and MAPE for the prediction of the test set for the 18 health
regions of Goiás

Health Regions Proposed approach * ETS Prophet

MAE MAPE MAE MAPE MAE MAPE

Central 77.3910 3.6490 128.6836 5.7422 119.4458 5.4865
South-Center 35.3885 3.3310 55.0562 4.9244 58.1816 5.4811

North Surroundings 10.6213 3.3179 26.8542 7.9628 18.3211 5.8478
South Surroundings 32.1666 3.0313 32.9006 3.1557 50.0397 4.6028

Estrada de Ferro 14.3650 4.4351 19.3445 5.6765 18.4363 5.8752
Northeast I 5.2874 9.5220 4.8953 8.9647 5.8825 11.5876
Northeast II 9.2735 8.0387 9.3436 8.0598 10.2323 8.3717

North 11.7480 7.9385 9.5333 6.6195 12.1325 8.5205
West I 6.0515 5.2985 6.2235 5.4391 9.4667 8.4516
West II 11.0499 9.4046 11.8608 9.5868 13.3485 11.9695
Pirineus 20.3933 3.2715 29.7174 4.6125 32.2141 5.0748

Rio Vermelho 14.6045 7.0024 47.2651 18.5988 21.4760 9.8399
São Patrício I 10.7698 6.2888 12.0453 6.9699 13.4162 7.5975
Serra da Mesa 9.4776 7.2025 11.0501 9.0740 11.4359 9.5512
Southwest I 21.4869 4.1051 27.0962 5.0913 34.1443 6.5823
Southwest II 14.5199 4.9459 18.3881 6.2627 18.8340 6.8762

South 10.0706 3.7820 11.6000 4.2193 13.1251 5.0129
São Patrício II 11.7832 6.2087 10.9664 5.7232 16.1416 8.1900

Goiás ** 18.1360 5.5985 26.2680 7.0380 26.4597 7.4955
* - Best result of five random seed initialization
** - Average of the results of the health regions



CHAPTER 7
Conclusion

In the upcoming sections, the conclusions resulting from the analysis of the case
studies presented in Chapters 5 and 6 will be discussed, along with suggestions for future
research.

7.1 Conclusions regarding Case study I

This work proposed the use of the LMU model in a 24-month ahead prediction
of live births in 18 health regions of the state of Goiás, in a univariate way. This proposal
proved to be an interesting approach because, compared to Prophet and ETS models,
LMU prevailed, achieving an average MAPE of 6.4614 and MAE of 19.9136, results that
were very similar to those obtained with ARIMA.

Although ARIMA performed slightly better than LMU, LMU showed supe-
rior performance in predicting health trends in larger regions. Therefore, it would be
worthwhile to test the LMU model on macro-regions that encompass multiple health re-
gions within larger territories, or even entire states, to evaluate its performance at a larger
scale. Additionaly, as it can see in Chapter 6 an neural network approach can be enchaced
by the cross-series information, in this way, a deep learning approach such as LMU can
be improved by training it as global models for health regions or other territory hierarchy.

7.2 Conclusions regarding Case study II

This work proposed an ANN with a clustering approach using a K -means algo-
rithm, leveraging the time series behavior across health regions improves forecast accu-
racy while reducing model training time. The models were tested in different scenarios
where the number of clusters changed, and the best results were reported with 2 clusters,
which means, two models were trained to predict 18 health regions.

The predictive capacity of the models was tested in terms of MAE and MAPE
and compared to statistical models like ETS and Prophet, the proposed ANN showed
an improvement for almost all health regions. It is concluded that the proposed model
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combining clustering using K -Means and ANN model is a good strategy, generating an
average result of 5.5985 and 18.1360 for MAPE and MAE.

Moreover, unlike traditional univariate models that train local models for each
time series, the proposed ANN model trains global models for all health regions based on
its clusters, leveraging cross-series information while reduces the computational cost of
training and optimizing each local model. Although the computational costs, in terms of
time, of the proposed ANN model may be higher than some statistical models, it provides
a practical and efficient solution for forecasting health trends across different regions by
generating more accurate predictions.
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mory units: Continuous-time representation in recurrent neural networks. Advances in

neural information processing systems, v. 32, 2019.

[Vollmer et al. 2021]VOLLMER, M. A. et al. A unified machine learning approach to time

series forecasting applied to demand at emergency departments. BMC Emergency

Medicine, BioMed Central, v. 21, n. 1, p. 1–14, 2021.

[Wang et al. 2018]WANG, K. et al. Deep belief network based k-means cluster approach

for short-term wind power forecasting. Energy, Elsevier, v. 165, p. 840–852, 2018.

[WHO]WHO. https://brasil.un.org/pt-br/sdgs/3. Accessed: 2023-01-11.

[Widrow e Hoff 1960]WIDROW, B.; HOFF, M. E. Adaptive switching circuits. [S.l.], 1960.

[Zhang et al. 2022]ZHANG, Y. et al. The prediction of preterm birth using time-series

technology-based machine learning: Retrospective cohort study. JMIR Medical Informa-

tics, JMIR Publications Toronto, Canada, v. 10, n. 6, p. e33835, 2022.

https://brasil.un.org/pt-br/sdgs/3

	Elementos Pré-Textuais
	Capa
	Folha de Rosto
	Resumo
	Abstract

	Sumário
	List of Figures
	1 Introduction
	2 Related Works
	3 Background
	3.1 Time Series Forecasting Problem
	3.2 Time Series Clustering
	3.2.1 K-means
	3.2.2 Dynamic Time Warping

	3.3 Artificial Neural Networks - ANNs
	3.4 Legendre Memory Unit - LMU

	4 Live Births Prediction for Health Regions of Goiás with Machine Learning
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Sliding Window
	4.4 Performance Measures

	5 Case study I: Live Births Prediction using Legendre Memory Unit: A case study for the health regions of Goiás
	5.1 Experimental Results

	6 Case study II: Live Births Forecasting Across Health Regions of Goiás using Artificial Neural Networks: A Clustering Approach
	6.1 Experimental Results

	7 Conclusion
	7.1 Conclusions regarding Case study I
	7.2 Conclusions regarding Case study II

	References

