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Abstract. In this paper a generalized Rayleigh-Liénard oscillator is consider and lower bounds for

the number of limit cycles bifurcating from weak focus equilibria and saddle connections are pro-

vided. By assuming some open conditions on the parameters of the considered system the existence

of up to twelve limit cycles is provided. More precisely, the approach consists in perform suitable

changes in the sign of some specific parameters and apply Poincaré-Bendixson Theorem for assure

the existence of limit cycles. In particular, the algorithm for obtaining the limit cycles through the

referred approach is explicitly exhibited. The main techniques applied in this study are the Lya-

punov constants and the Melnikov method. The obtained results contemplate the simultaneity of

limit cycles of small amplitude and medium amplitude, the former emerging from a weak focus

equilibrium and the latter from homoclinic or heteroclinic saddle connections.

1. Introduction

1.1. Historical facts and equations of Rayleigh and Liénard. Ordinary differential equa-

tions (ODEs) have been largely studied in mathematics since the invention of Calculus back in

17th century. Since that the theory have proved to be very accurate to model real problems from

mechanics movements and chemical reactions to social and financial sciences. The interest by ODEs

gained even more attraction after the remarkable work of Poincaré entitled Mémoire sur les courbes

définies par une équation différentielle, see [17]. This paper, dated 1882, is consider one of the start-

ing points of the so called qualitative theory of ODEs. In particular, Poincaré formally introduced

the concept of limit cycle, an isolated periodic orbit inside the set of all periodic orbits of an ODE,

and exhibited an ad hoc example of ODE presenting a limit cycle without any connection to some

concrete problem. However, the first reported case of a limit cycle surging from a real model ODE

was probably provided by Rayleigh in 1877 in his study on the oscillations of a violin string, see

[18]. Posteriorly in 1908 another example of limit cycle emerged from a series of works of Poincaré

addressing wireless telegraphy, although the most recognized example of a limit cycle is due to Van

der Pol on the electrical circuits in 1927, see [21].

The goal of this paper is to study the existence and the number of limit cycles in a system which

is a generalization of the Rayleigh and Van der Pol systems. The equation proposed by Rayleigh

which is nowadays known as Rayleigh equation is

(1) ẍ+ ax+ ε(c3 + c4ẋ
2)ẋ = 0

where ε is a small parameter. We also point to [13] for some historical facts about Rayleigh work.
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2 R. D. EUZÉBIO, J. LLIBRE, D. J. TONON

For the sake of applications of non-linear systems it is usually interesting to assume that the

unperturbed part of (1) has a potential of the form V (x) = ax2+bx4 so the total energy is ẋ2+V (x).

This is achieved by adding the term 2bx3 to the last equation obtaining then the equation

(2) ẍ+ ax+ 2bx3 + ε(c3 + c4ẋ
2)ẋ = 0,

which is the generalized Rayleigh system. By replacing the term c4ẋ
2 in the Rayleigh equations

by c2x
2 + c1x

4 we obtain the famous generalized Van der Pol or Liénard equation. Therefore, by

combining generalized Rayleigh and Liénard equations we obtain

(3) ẍ+ ax+ 2bx3 + ε(c3 + c2x
2 + c1x

4 + c4ẋ
2)ẋ = 0.

Last equation is common referred in the literature as mixed generalized Rayleigh-Liénard equation.

In the general case, one can study the problem

ẍ+ ax+ 2bx3 = εf(x, ẋ),

see for instance the work of Guckenheimer and Holmes in [10].

In this paper we study the limit cycles for the case f(x, ẋ) = (c3+c2x
2+c1x

4+c4ẋ
2+c5x

6+c6ẋ
4)ẋ

so that the mixed generalized Rayleigh-Liénard equation becomes a particular case of the equation

we deal with. The equation we study is then

(4) ẍ+ ax+ 2bx3 − ε(c3 + c2x
2 + c1x

4 + c4ẋ
2 + c5x

6 + c6ẋ
4)ẋ = 0,

that is equivalent to the system

(5)
ẋ = y,

ẏ = −ax− 2bx3 + εQ(x, y).

where Q(x, y) = (c3 + c2x
2 + c1x

4 + c4y
2 + c5x

6 + c6y
4)y. Our purpose is to obtain a lower bound

for the number of limit cycles of (5).

The problem of finding limit cycles involves several methods and approaches, some of them are

briefly summarized in what follows. In [2] the authors study equation (3) by using the harmonic

balance and Krylov-Bogoliubov methods to obtain up to two limit cycles. System (3) was also

studied by Lynch in [14] by using Lyapunov constants obtaining three limit cycles. Then, the same

authors of [2] using harmonic balance method and elliptic functions presented an example with

seven limit cycles for the case a < 0 and b > 0, see [3]. In [22] the authors prove that system (3) can

have eight limit cycles, improving the lower bound obtained in [3]. The authors use both Lyapunov

constants as well as Melnikov method to get the results for the case ab < 0. It also worth to mention

the recent work [5] on which the authors study the global dynamics from a particular case of system

(2), namely, assuming ε = c4 = 2b = 1. The main result of that paper provides conditions on a

and c3 so that system (2) presents pitchfork, Hopf, homoclinic and double limit cycle bifurcations,

which would be a very difficult - if possible - task considering arbitrary parameters or a more general

system (3).

The study of lower and upper bounds for the number of limit cycles is widely considered in the

literature. An usual approach is to consider suitable perturbations on structural unstable systems

and then to look at the bifurcations taking place. In this case, the bounds for the numbers of
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limit cycles that can bifurcate provide an idea about the co-dimension of the problem. In the local

scenario, these bifurcations usually occur at degenerated Hopf bifurcations equilibria and they can

be studied through the Lyapunov constants, we mention the work of Torregrosa and coauthors, see

for instance [8] and [12]. The non-local case can be studied through some techniques, an effective

one being the Melnikov function which can be applied in different ways. One of them is to consider

global bifurcations from non hyperbolic limit cycles or saddle connections, see for instance [22]

and [19]. Another way to apply Melnikov method is through the analysis of critical and regular

level curves associated to some Hamiltonian function. This is a more general approach because it

contemplates both local and global scenarios.

In particular, the study of Melnikov functions emerging from perturbations of Hamiltonian sys-

tems have been well established in the work of Petrov in a series of papers published some decades

ago, see for instance [15], [16] and references therein. In those papers Petrov provides some up-

per bounds for the number of limit cycles bifurcating from distinct configurations of Hamiltonian

functions in terms of the degree of the perturbations. In particular, Petrov use Tchebyshev spaces

to associate the number of zeros of the Melnikov function to the number of zeros of some linear

combinations involving elliptic integrals, and they represent a fine advance in the study of limit

cycles. Nevertheless, a sharp bound is obtained in [7] where the authors use an approach similar to

Petrov’s to provide a new upper bound for the number of limit cycles.

1.2. The main result of the paper. In this paper we study system (5) which generalizes equation

(3). We consider the case where a and b have opposite sign and apply both Lyapunov and Melnikov

methods as the authors did in [22]. The approach consists in to consider suitable perturbations on

the coefficients of the system to produce changes in the sign of the Lyapunov constants (derivatives

of the Poincaré map) and Melnikov function. The limit cycles essentially bifurcate from weak focus

equilibria and from heteroclinic and homoclinic loops containing those weak focus. We highlight

that the lower bounds provided in this paper agree with Petrov’s statements mentioned before.

We distinguish between the limit cycles that bifurcate from the weak focus equilibria from the ones

that bifurcate from saddle connections, denoting them as small amplitude limit cycles, or medium

amplitude limit cycles, respectively. Therefore we say that system (5) presents a configuration (i, j)

of limit cycles if there exists i limit cycles of small amplitude and j limit cycles of medium amplitude.

The main contributions of this paper can be summarized as follows: first, we consider a quite

general system without assuming any hypotheses on the parameters except the condition ab < 0.

So we are able to obtain from one to twelve limit cycles in a region of the phase portrait containing

the equilibria. On the other hand, we explicitly exhibit the algorithm to obtain those limit cycles

and we provide the conditions for the realization of those number of limit cycles.

This important part of the process for obtaining the limit cycles is in general omitted in the

literature. This is the case in [22], where the authors only pointed out the approach which a priori

does not guarantee the realization of the limit cycles as claimed. We stress, however, that although

paper [22] contain some minor miscalculations, assuming c5 = c6 = 0 our results points to an

upper bound of eight limit cycles, which is the quantity obtained in that paper. Besides then, we

emphasize that the procedure considered in the present paper, based in the Lyapunov constants and

Melnikov method, allow us to consider the simultaneous existence of limit cycles bifurcating from
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the equilibrium of center type (small amplitude) and from the homoclinic/heteroclinic connection

(medium amplitude) that represents a critical point of the Melnikov function. The main result of

this paper is the following.

Theorem 1. Consider system (5). Then there exists suitable values of parameters realizing the

following configurations of limit cycles:

(a) (s,m) if a > 0 and b < 0, where m ∈ {0, 1, 2, 3}, s ∈ {0, 1, 2, 3, 4, 5} and s+m ≤ 5.

(b) (2s, 3m + k) if a < 0 and b > 0, where m ∈ {0, 1, 2}, k ∈ {0, 1, 2}, s ∈ {0, 1, 2, 3, 4} and

2s+ 3m+ k ≤ 12.

The rest paper is organized as follows: In Section 2 the canonical forms that we consider in

this paper are presented. In Section 3 we present the general facts about Lyapunov constants and

Melnikov method. The Lyapunov constants and the Melnikov functions related with the generalized

Rayleigh-Liénard system are given in Sections 4 and 5, respectively. Finally, in Section 6 we state

and prove some auxiliary results and Theorem 1.

2. Canonical forms for the generalized mixed Rayleigh-Liénard oscillator

In the following we apply a linear change of coordinates to equation (4), providing a simpler

expression for the system that models a generalized mixed Rayleigh-Liénard oscillator.

Lemma 1. Consider system (5). The following statements holds.

(a) If a > 0 and b < 0 then system (5) is topologically equivalent to system

(6)

ẋ = y,

ẏ = −x− 2b

a2
x3 + εQ1(x, y),

where Q1(x, y) = (d3 +d2x
2 +d1x

4 +d4y
2 +d5x

6 +d6y
4)y, d1 = c1/ 5

√
a, d2 = c2/ 3

√
a, /, d3 =

c3/
√
a, d4 = c4/

√
a, d5 = c5/ 7

√
a and d6 = c6/

√
a.

(b) If a < 0 and b > 0 then system (5) is topologically equivalent to system

(7)

ẋ = y,

ẏ = −x+
3
√
b

2a
x2 − b

2a2
x3 + εQ2(x, y),

where Q2(x, y) = (e3 + e7x + e2x
2 + e8x

3 + e1x
4 + e9x

5 + e5x
6 + e4y

2 + e6y
4)y, e1 =

2c1b− 15ac5

8
√

2(−a)5/2b
, e2 =

15a2c5 − 12ac1b+ 4c2b
2

8
√

2(−a)3/2b2
, e3 = −a

3c5 − 2a2c1b+ 4ac2b
2 − 8c3b

3

8
√

2
√
−ab3

, e4 =

c4√
−2a

, e5 =
c5

8
√

2(−a)7/2
and e6 =

c6√
−2a

. Besides then the parameters e7, e8 and e9 are

linearly dependent with respect to the parameters e1, . . . , e6 and satisfies

e7 = −
2a
(
48a4e5 − 4a2be1 + b2e2

)
b5/2

, e8 =
40a3e5 − 4abe1

b3/2
and e9 = −6ae5√

b
.

Proof. Consider system (5). We initially consider the case a > 0 and b < 0. Applying the change of

coordinates x̃ =
√
ax, ỹ = y and t̃ =

√
at we obtain system (6), where we have removed the tilde in

the expression of the system.
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For the case a < 0 and b > 0, we initially translate the point p1 =

(√
−a
2b
, 0

)
to the origin by

the change of coordinates x̃ = x−
√
−a
2b

and ỹ = y. So system (5) becomes

(8)
ẋ = y,

ẏ = x
(
3
√
−2abx+ 2a− 2bx2

)
+ εQ(x, y),

where Q(x, y) =
y

8b3

(
8
√
−2ababx

(
c1 + 5c5x

2
)
−6
√
−2aba2c5x − a3c5 + 2a2b

(
c1 + 15c5x

2
)

−8
√
−2abb2x

(
2c1x

2 + c2 + 3c5x
4
)
− 4ab2(6c1x

2 + c2 +15c5x
4) + 8b3(c1x

4 + c2x
2 + c3 + c4y

2 + c5x
6

+c6y
4)
)

and as in the previous case, we remove the tildes in the expression of the system.

After we consider the rescaling ˜̃x =
√
−2ax̃, ˜̃y = ỹ and t̃ =

√
−2at. Applying this change of

coordinates to system (8), we get system (7), where we remove the tildes in the expression of the

system. This completes the proof of the lemma. �

3. Main techniques to analyze small and medium amplitude limit cycles

To analyze the types and the number of limit cycles that can bifurcate near to the perturbed center

and from the homoclinic/heteroclinic connections we make use of two main techniques, namely,

Lyapunov constants and Melnikov functions. We apply these two powerful techniques separately

and posteriorly we combine them to obtain simultaneity of small and medium amplitude limit cycles.

In this way, exhibiting the Lyapunov constants with the local basis and improving the Bautin’s

algorithm we are able to analyze the number of small amplitude limit cycles, that bifurcates from the

perturbed center when system (5) presents a homoclinic connection (a < 0, b > 0) or a heteroclinic

one (a > 0, b < 0).

Next, we present the Melnikov functions that characterize the existence of the homoclinic/hete-

roclinic connections, as well as the stability of these connections. According to this approach of

changing the stability of the connections and breaking them ultimately, we are able to provide con-

ditions for the existence of limit cycles that bifurcates from the homoclinic/heteroclinic connections,

which we call medium amplitude limit cycles. All these results are given in terms of the param-

eters of the systems. Finally, we analyze the simultaneous existence of the bifurcations of small

and medium limit cycles, near to the perturbed center and the homoclinic/heteroclinic connection,

respectively. In the following we present these techniques.

3.1. Lyapunov constants. In the following we briefly present the approach to deal with the limit

cycles emerging from changing signs in the Lyapunov constants. It can be founded for instance in

[1, 4, 6]. Consider differential systems

ẋ = λx− y + P (x, y), ẏ = x+ λy +Q(x, y),(9)

where P and Q are polynomials without constant and linear terms. Then the origin of system (9) is

a weak focus if λ = 0. The limit cycles that bifurcate from a weak focus are called small amplitude

limit cycles.

When λ = 0 we denote a local Lyapunov function by V , defined in a neighborhood of the origin.

Then the origin is a weak focus it is stable or unstable if V̇ < 0 or V̇ > 0, respectively, where
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V̇ denotes the rate of changes of V along the trajectories of (9). The expression of V can be

constructed, see [4] and [9], and it is of the form

V̇ = η2(x2 + y2) + η4(x2 + y2)2 + · · ·+ η2k(x
2 + y2)2k + . . . ,

where η2k is a polynomial in the coefficients of the polynomials P and Q. We define η2k the k-th

focal value. In the following we get that the weak focus is stable, unstable if the first non-zero focal

value is negative, positive, respectively, see [4].

When the origin is a weak focus it is a center if and only if η2k = 0 for all k. Moreover the

stability of the origin is determined by the sign of the first non–zero focal value. As η2k is relevant

only when η2l = 0 for l < k, we put η2 = η4 = . . . = η2k−2 = 0 in the expression for η2k. Instead of

working with the η2k following to many authors we prefer to work with

V2k+1 = 2πη2k,

and call it the n–th Lyapunov constant.

For ε > 0 and small consider the interval J = {(x, 0) : 0 ≤ x < ε} and the Poincaré return map

x 7→ h(x) defined from J → {(x, 0) : 0 ≤ x}. It assigns to x the abscissa h(x) of the point where

the orbit of the differential system (9) starting at the point (x, 0) ∈ J first returns to the positive

half-axis {(x, 0) : 0 ≤ x}. Then the displacement function is defined as x 7→ d(x) from J → R by

d(x) = h(x) − x. Therefore the orbit of system (9) through the point (x, 0) 6= (0, 0) is periodic if

and only if x is a zero of the displacement function.

Clearly the Lyapunov constants are related with the coefficients of the displacement function,

because the origin of system (9) is a center if and only if the displacement function is identically

zero, if and only if the Lyapunov constants V2k+1 = 0 for k ≥ 1. In fact it is known that

d(x) = λx

a0 +
∞∑
j=1

a1
jx
j

+
∑
k≥1

V2k+1x
2k+1

1 +
∞∑
j=1

a2k+1
j xk

 ,
for |x| < ε, where

a0 =
e2πλ − 1

λ
= 2π +O(λ),

and the a2k+1
j for k = 1, 2, . . . are analytic functions in λ and in the coefficients of the polynomials

P and Q. For more details in the displacement function see [20].

Since P and Q are polynomials, by the Hilbert basis theorem there is a constant m such that

V2k+1 = 0 for all k ≥ 1 if and only if V2k+1 = 0 if k = 1, . . . ,m. Therefore it is necessary to compute

only a finite number of the Lyapunov constants, though with few exceptions for any given case it is

unknown a priori how many are required.

Definition 1. We say that the origin is a weak focus of order k of system (9) if η2 = · · · = η2k = 0

and η2k+2 6= 0.

Remark 1. By the previous definition, the origin is a weak focus of order k of system (9) if

V3 = · · · = V2k−1 = 0 and V2k+1 6= 0.

In [4] the authors stated that if a system presents a weak focus at the origin of order k at most

k small amplitude limit cycles can bifurcate from the origin under perturbation of the system. In
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the following we describe briefly how to provide a convenient perturbation of the original system

presenting a weak focus of order k at the origin to produce k small amplitude limit cycles.

The expressions η2k provides the Lyapunov constants V2k−1. We assume that V1 = 1, V3 = · · · =
V2k−1 = 0 and V2k+1 6= 0. Without loss of generality we assume that V2k+1 < 0. Therefore the origin

is stable. Consider Γ1 be a level curve of V which is sufficiently close to the origin. So the flow of

system (9) is inward across it.

Now consider a suitable perturbation S1 of system (9) such that the Lyapunov constants satisfy

V3 = · · · = V2k−3 = 0 and V2k−1 > 0. Therefore, the origin now is unstable for S1. As S1 is sufficiently

close to system (9) then the flow remains inward across Γ1. Consider W1 the Lyapunov function of

S1, take Γ2 a level curve of W1, inside of the region limited by Γ1 and sufficiently close to the origin

in such a way that the flow of S1 is outward across of Γ2. Therefore by the Poincaré-Bendixson

Theorem we conclude that there exists a limit cycle of S1 between Γ1 and Γ2. In the following

working in a similar way we consider a convenient perturbation S2 of S1 with analogous properties.

In this way at most k limit cycles can be produced by convenient perturbations of system (9).

Note that the Lyapunov constants must satisfy:

|V2i−1| � |V2i+1| and V2i−1 · V2i+1 < 0,

for i = 3, . . . , k. If all the constants V2k+1 are zero then the origin is a center.

3.2. Melnikov method. In order to present the Melnikov method, note that system (5) with ε = 0

is a Hamiltonian system with the Hamiltonian function

H(x, y) =
1

2
(y2 + ax2 + bx4).

If ab > 0 then the origin is the unique equilibrium point and if ab < 0 there exists three equilibrium

points: O = (0, 0), p1 =

(√
−a
2b
, 0

)
and p2 =

(
−
√
−a
2b
, 0

)
. In this way if a > 0 and b < 0, then

O = (0, 0) is a center point and p1, p2 are saddle points, and if a < 0 and b > 0 then O = (0, 0)

is saddle point and p1, p2 are center points. As system (5) with ε = 0 is Hamiltonian, then for the

case a > 0 and b < 0 we have a heteroclinic loop between the two saddle points p1 and p2. On the

other hand in the case a < 0 and b > 0 the system presents a homoclinic loop. It is important to

note that system (5) is invariant under the transformation (x, y) 7→ (−x,−y), so its phase portrait

is symmetric with respect to the origin, see Figure 1.

p2 O p1
p2

O
p1

(a) (b)

Figure 1. The topological structure of system (5) with ε = 0. In (a) we get a >
0, b < 0, and in (b) we have a < 0, b > 0.
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We note that for ε 6= 0 system (5) is no longer Hamiltonian so if ε is sufficiently small generically

the saddle connections are broken and the center structure is destroyed. Therefore in both scenarios

we can eventually have the birth of limit cycles emerging from those equilibria or loops.

p

p2 O p1

n1
Aε

1 Aε
2

p1O

(a) (b)

p n1

Aε
1

Aε
2

Figure 2. In figures (a) and (b) are presented the geometric approach of the con-
struction of Melnikov functions of systems (6) and (7), respectively.

More precisely, consider Aε
1 the unstable manifold of p2 and Aε

2 the stable manifold of p1, see

Figure 2. Let Aε be the heteroclinic, homoclinic loop of systems (6), (7), resp., and p ∈ Aε. Consider

n1 =
(Hx(p), Hy(p))

||(Hx(p), Hy(p))||
,

then Melnikov function is

d(ε,M1) = −〈n1,
−−−→
Aε

1Aε
2〉,

see Figure 2, and for more details about the homoclinic and heteroclinic loops see [19].

We notice that system (6) has the same equilibrium points than system (5) but in this case the

Hamiltonian function associated to its unperturbed part is given by

H1(x, y) = ax2 +
b

2
x4 +

1

2
y2.

Since the orbits of system (6) with ε = 0 lie on the h-levels of function H1, we see that for

h = −a2/8b it has a heteroclinic loop A formed by the saddle equilibrium points and two orbits A1

and A2 connecting them, that is, A = {p1} ∪A1 ∪ {p2} ∪A2. From the expression of H1 we obtain

the analytical expression of these arcs:

A1,2 : y = y(x) = ∓
√
−b
a
x2 ±

√
a

−4b
,

where |x| ≤
√
− a

2b
. In this case we note that A surrounds the center equilibrium O = (0, 0).

On the other hand, the points O = (0, 0), q1 =

(
a√
b
, 0

)
and q2 =

(
2a√
b
, 0

)
are equilibrium

points for system (7) being

H2(x, y) =
x2

2
−
√
b

2a
x3 +

b

8a2
x4 +

1

2
y2
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the Hamiltonian function of the system for ε = 0. Doing a translation of the original system for

obtaining system (7), q1 is a saddle when ε = 0, the equilibria O and q2 are centers. The level

h = a2/8b of Hamiltonian function H2 contains two homoclinic loops Ll and Lr and the saddle

point centered at q1. We call L = Ll ∪ {q1} ∪ Lr. In this case Ll and Lr are determined by the

following relations:

Ll : y = sign (y)(−a+
√
bx)

√
a2 + 2a

√
bx− bx2

a2b
,

if
a(1 +

√
2)√

b
≤ x ≤ a√

b
and

Lr : y = sign (y)(a−
√
bx)

√
a2 + 2a

√
bx− bx2

a2b
,

if
a√
b
≤ x ≤ a(1−

√
2)√

b
. Observe that the homoclinic loop Li surrounds the equilibria O and q2.

Now we denoted by Q2(x, y) the perturbed part of system (7), that is, Q2(x, y) = (e3 +e7x+e2x
2 +

e8x
3 + e1x

4 + e9x
5 + e4y

2 + e5x
6 + e6y

4)y.

4. Preliminary to obtain small limit cycles using Lyapunov constants

In this section we present the Lyapunov constants for each system.

Lemma 2. Consider system (6) with d3 = 0. The first Lyapunov constant is V1 = 1, then

(10) V3 = −1

4
πε(d2 + 3d4).

If V3 = 0, then

(11) V5 = −πε(a
2d1 + 5a2d6 + 6bd4)

8a2
.

If V3 = V5 = 0, then

(12) V7 = −
πε
(
−6a2d3

4ε
2 + 5a2d5 + 80bd6

)
64a2

.

If V3 = V5 = V7 = 0, then

(13) V9 =
3πε

(
15a4d2

4d6ε
2 + 12a2bd3

4ε
2 − 35b2d6

)
160a4

If V3 = V5 = V7 = V9 = 0, then

(14) V11 = − 3πd3
4ε

3

3200a4
(
3a4d2

4ε
2 − 7b2

)2 (315a12d6
4ε

6 + 2644a8b2d4
4ε

4 − 9065a4b4d2
4ε

2 − 7350b6
)
.

Proof. Consider the polynomial system

ẋ = y + p(x, y),

ẏ = −x+ q(x, y).
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Applying the change of coordinates x = r cos θ and y = sin θ, we can write

(15)
dr

dθ
=
∑
i≥1

vi(θ)r
i,

where vi(θ) are trigonometric polynomials in the variables cos θ and sin θ. Denoting by r(θ, r0) the

solution of (15) satisfying r(0, r0) = r0, then in a neighborhood of r = 0 we obtain

r(θ, r0) = u1(θ)r0 +
∑
i≥2

ui(θ)r
i
0,

with ui(0) = 0 for all i ≥ 2, then the Poincaré return map is

Π(r0) = r(2π, r0) = u1(2π)r0 +
∑
i≥2

ui(2π)ri0.

As the Poincaré map is analytic the condition Π(r0) ≡ r0 is equivalent to the fact that system (6)

presents a center at the origin. Note that Π(r0) ≡ r0 if and only if ui(2π) = 0 for all i ≥ 2. As

stated in [1] and by direct computations we obtain that u2k(2π) = 0 for all k a positive integer.

At this moment we are able to obtain the Lyapunov constants for system (6). Consider system

(6) and assuming that d3 = 0, then following the steps described previously, we get that the first

Poincaré constant

u1(2π) = 1.

and then we obtain

u3(2π) = −1

4
πε(d2 + 3d4).

Assuming that d2 = −3d4 we obtain

u5(2π) = −πε(a
2d1 + 5a2d6 + 6bd4)

8a2
.

If d2 = −3d4 and d1 = −6bd4

a2
− 5d6, then

u7(2π) = −
πε
(
−6a2d3

4ε
2 + 5a2d5 + 80bd6

)
64a2

.

If d2 = −3d4, d1 = −6bd4

a2
− 5d6 and d5 =

6d3
4ε

2

5
− 16bd6

a2
, then

u9(2π) =
3πε

(
15a4d2

4d6ε
2 + 12a2bd3

4ε
2 − 35b2d6

)
160a4

.

If d2 = −3d4, d1 = −6bd4

a2
− 5d6, d5 =

6d3
4ε

2

5
− 16bd6

a2
and d6 =

12a2bd3
4ε

2

5
(
7b2 − 3a4d2

4ε
2
) then

u11(2π) = − 3πd3
4ε

3

3200a4
(
3a4d2

4ε
2 − 7b2

)2 (315a12d6
4ε

6 + 2644a8b2d4
4ε

4 − 9065a4b4d2
4ε

2 − 7350b6
)
.

As ε is a small parameter then u11(2π) = 0 if and only if d4 = 0. So if besides d3 = 0 we assume

d2 = −3d4, d1 = −6bd4

a2
− 5d6, d5 =

6d3
4ε

2

5
− 16bd6

a2
, d6 =

12a2bd3
4ε

2

5
(
7b2 − 3a4d2

4ε
2
) and d4 = 0 then we

obtain that all the others coefficients di are null and therefore system (6) is a Hamiltonian system,
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and therefore the origin is a center. In what follows we denote the Lyapunov constant ui(2π) by

Vi. �

Lemma 3. Consider system (7) with e3 = 0 and e2 =
4a2be1 − 48a4e5

b2
. The first Lyapunov constant

is V1 = 1, then

(16) V3 = −
πε
(
−48a4e5 + 4a2be1 + 3b2e4

)
4b2

.

If V3 = 0, then

(17) V5 =
1

8
πε

(
3be4

a2
+

8a2e5

b
− 5e6

)
.

If V3 = V5 = 0, then

(18) V7 =
1

32
πε

(
24b2e4

a4
+ 3e3

4ε
2 + 44e5

)
If V3 = V5 = V7 = 0, then

(19) V9 =
9πe4ε

(
2a12e6

4ε
6 + 7a8b2e4

4ε
4 − 25a4b4e2

4ε
2 + 35b6

)
1760a6b3

.

Proof. Considering now system (7) with e3 = 0 and e2 =
4a2be1 − 48a4e5

b2
. Proceeding in a similar

way as in the proof of Lemma 2, the first Lyapunov constant is u1(2π) = 1 and we conclude that the

expression of u3(2π) is given in (16). Assuming that e1 = −
3
(
b2e4 − 16a4e5

)
4a2b

we conclude that the

expression of u5(2π) is given in (17). If e1 = −
3
(
b2e4 − 16a4e5

)
4a2b

and e6 =
8a4e5 + 3b2e4

5a2b
we conclude

that the expression of u7(2π) is given in (18). If e1 = −
3
(
b2e4 − 16a4e5

)
4a2b

, e6 =
8a4e5 + 3b2e4

5a2b
and

e5 = −
3
(
a4e3

4ε
2 + 8b2e4

)
44a4

we conclude that the expression of u9(2π) is given in (19).

Similarly we done in the previous case, u9(2π) = 0 if and only if e4 = 0. In this way, assuming

e4 = 0 and replacing this condition in the others parameters we conclude that all ei’s are null and

therefore system (7) is a Hamiltonian system. So, the origin is a center. As we done in the previous

case, we denote the Lyapunov constant ui(2π) by Vi. �

5. Preliminary to obtain medium limit cycles using Melnikov function

We now study the persistence and stability of the saddle connections of systems (6) and (7). We

start analyzing on which (non generic) conditions the homoclinic and heteroclinic loops persist for

these systems with ε 6= 0. This is provided by the first order Melnikov functions associated to each

system. Once we have established conditions to persistence, we will deal with the stability of such

loops.

5.1. Persistence and stability of heteroclinic loop in system (6). Denote by Q1(x, y) the

perturbed part of system (6), that is, Q1(x, y) = (d3 + d2x
2 + d1x

4 + d4y
2 + d5x

6 + d6y
4)y. For

system (6) we have the following result:
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Lemma 4. System (6) has a heteroclinic loop Aε close to A if and only if

d2 = ϕ1(d1, d3, d4, d5, d6, ε)

= −12d4

7
− 5a4d5

84b2
+
a2(99d1 + 160d6)

462b
+

10bd3

a2
+ O(ε).

We write Aε = {p1} ∪Aε
1 ∪ {p2} ∪Aε

2, where Aε
1,2 denotes the orbits coming from A1,2 for ε 6= 0.

In what follows we prove Lemma 4 only for the arc A1, because by symmetry A1 is broken if and

only if A2 is broken.

Proof. In order to obtain the conditions for the persistence of the heteroclinic loop of system (6)

with ε = 0 it is sufficient to study the zeros of the first order Melnikov function M1 associated to

the heteroclinic loop. As done in [19] this function depends on the parameters of the system and it

is given by

M1 =

∫
A1

Q1(x, y) dx,

where we highlight that M1 = M1(a, b, d1, . . . , d6). Using the expression of A1 obtained in Subsection

3.2 we get

M1 =

∫
A1

(d3 + d2x
2 + d1x

4 + d4y
2 + d5x

6 + d6y
4)y dx

= 2

∫ a√
−2b

0
(d3 + d2x

2 + d1x
4 + d4y(x)2 + d5x

6 + d6y(x)4)y(x) dx

where y(x) = −
√
−b
a2
x2 +

√
a2

−4b
. Replacing M1 into the expression of the integral we get∫ a√

−2b

0

[
−a

2 + 2bx2

2
√
−a2b

(d3 + d2x
2 + d1x

4 + d5x
6 − d4

4a2b
(a2 + 2bx2)2 +

d6

16a4b2
(a2 + 2bx2)4)

]
dx.

Integrating we obtain

M1 =
1

13860
√

2b4
(198a6bd1 − 924a4b2d2 + 9240a2b3d3 −−1584a4b2d4 − 55a8d5 + 320a6bd6)

and finally solving this last equation with respect to the parameter d2 we are done. �

Since system (5) is analytic the heteroclinic loop is isolated, so one can study its stability.

Lemma 5. Assume that d2 = ϕ1. The heteroclinic loop Aε is stable (respect. unstable) if the value

div(p2) =
1

231b3
(−22a6d5 + a4b(33d1 − 40d6) + 198a2b2d4 − 924d3b

3)ε.

in negative (respect. positive).

Proof. The proof is straightforward from the computation of the divergence at the saddle point

p2. �

If the condition of Lemma 4 occurs we have a simple loop. However if that divergence is zero in

order to obtain the stability of the heteroclinic loop we must analyze higher orders of the return

map, see [11]. In this direction we have the following result.
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Lemma 6. Assume that d2 = ϕ1 and div(p2) = 0, that is,

d1 = ϕ2(d3, d4, d5, d6) =
40d6

33
+

2a2d5

3b
− 6d4b

a2
+

28d3b
2

a4
.

Then the heteroclinic loop Aε is stable (resp. unstable) if the value d5 is

ϕ3(d3, d4, d6, ε) = ε
6b(−100a4d6 + 231a2bd4 + 308d3b

2)

11a6

is negative (resp. positive).

Proof. In [19] we see that the stability of Aε is given by the sign of the expression

ε

∫
Aε

∂Q1

∂y
dt = ε

[∫
A

∂Q1

∂y
dt+O(ε)

]
Thus, since ε 6= 0 is sufficiently small it is sufficient to study the sign of the right hand side of the

last equality.

Using the particular values of d1 and d2 we get

∂Q1

∂y
=

d3(a2 + 2bx2)(a2 + 14bx2)

a4
+
x2(a2 + 2bx2)(80bd6 + 11d5(a2 + 6bx2))

132b2

+5d6y
4 + 3d4

(
−x2 − 2bx4

a2
+ y2

)
.

Due to the symmetry and using the parametrization of arc A1 obtained in Subsection 3.2 we get

the expression for ε

∫
Aε

1

∂Q1

∂y
dt is

ε
−11a7d5 − 600a5bd6 + 1386a3b2d4 + 1848ab3d3

3564
√
−2b7

This last equation vanishes for d5 = ϕ3(d3, d4, d6, ε), so we are done. �

In summary the function ϕ1 controls the existence or not of the heteroclinic loop. If the loop

remains for ε 6= 0, the stability of it is determined by the sign of ϕ2 if the loop is simple, or by the

sign of ϕ2 if not. Now we perform the same computations for the case a < 0 and b > 0.

5.2. Persistence and stability of homoclinic loop in system (7). Analogously to Subsection

5.1 we study the Melnikov function and the stability of the homoclinic loop when it persists for

ε 6= 0.

Lemma 7. System (7) has a homoclinic loop Lε close to L if and only if

e2 = φ1(e1, e3, e4, e5, e6, ε) =
5be3

a2
+

6e4

7
− 1417a4e5

21b2
+
a2(1287e1 + 40e6)

231b
+O(ε).

Now we call Lε = Lεl ∪ {q1} ∪ Lεr, where in this case Lεl,r denotes the orbit arcs coming from Ll,r

for ε 6= 0 sufficiently small.

Proof. The conditions for the persistence of the homoclinic loop is provided by the zeros of the first

order Melnikov function M2 associated to the homoclinic loop, that is

M2 =

∫
Lr

Q2(x, y) dx.
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From the expression of the arc Lr we have M2 into the form∫ a−a
√
2√

b

a√
b

[1

2

√
(a−

√
bx)2(a2 + 2a

√
bx− bx2)

a2b

(
e3 + e2x

2 + e1x
4 − 6ae5√

b
x5 + e5x

6

−2a(−4a2be1+b2e2+48a4e5)√
b5

x+ −4abe1+40a3e5√
b3

x3 + e4(a−
√
bx)2(a2+2a

√
bx−bx2)

4a2b

+ e6(a−
√
bx)2(a2+2a

√
bx−bx2)2

16a2b

)]
dx.

By integrating M2 we get

M2 =

√
2a2

3465b4
(1155b3e3 + 33a2b2(−7e2 + 6e4)− 15587a6e5 + a4b(1287e1 + 40e6)).

Then solving this last equation with respect to the parameter e2 the result follows. �

The proof of the next result is straightforward.

Lemma 8. Assume that e2 = φ1. The homoclinic loop Lε is stable (resp. unstable) if the value

div(q1) = − 2

231b3
(462b3e3 + 99a2b2e4 − 748a6e5 + a4b(66e1 + 20e6))ε

is negative (resp. positive).

Lemma 9. Assume that e2 = φ1 and div(q1) = 0, that is,

e1 = φ2(e3, e4, e5, e6) =
−99b2e4 + 748a4e5 − 20a2be6

66a2b
.

Then the homoclinic loop Lε is stable (resp. unstable) if the value

e5 = φ3(e3, e4, e6, ε) = −3b(308b2e3 − 231a2be4 − 100a4e6)

44a6

is negative (resp. positive).

Proof. As proceeded in the proof of Lemma 6 we must study the sign of ε

∫
L1

∂Q2

∂y
dt. For fixed

values of e1 and e2 according with Lemmas 8 and 9, we get

∂Q2

∂y
=

x(a−
√
bx)2(2a−

√
bx)(99b2e4 + 110a4e5 + 132a3

√
be5x+ 2a2b(10e6 − 33e5x

2))

66a2
√
b5

+
e3(a−

√
bx)2(a2 + 14a

√
bx− 7bx2)

a4
+ 3e4y

2 + 5e6y
4.

As before, using symmetry and the parametrization of L1 obtained in Subsection 3.2 we obtain∫
L1

∂Q2

∂y
dt =

√
2(924ab3e3 − 693a3b2e4 + 44a7e5 − 300a5be6)

3465
√
b7

ε.

The last equation vanishes for e5 = φ3(e3, e4, e6, ε), so we are done. �

Function φ1 has the same role than the function ϕ, but now it controls the existence and stability

of the double homoclinic loop.
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6. Proof of the main result

In this section we prove the main result of the paper. Since Theorem 1 contemplates several cases

for different values of s, m and k, we split the proof in some lemmas, see next subsection. Once

the lemmas are stated and proved, the proof of the main theorem follows quite straightforwardly.

However we emphasize that lemmas are also important by themselves because they explicitly exhibit

the approach of choosing suitable perturbations of the parameters to obtain limit cycles, as described

in Section 3. This is important because such calculations sometimes are neglected or exhibited for

weak focus of low multiplicity as occurs in Hopf Theorem.

More precisely, we start considering the values in the parameters space for which the systems

present a center. In the following we perform suitable perturbations of these parameters to obtain

in each step a change in the sign of the Lyapunov constants. In other words, if for the values of

the parameters (α∗1, . . . , α
∗
m) the system presents a center, then we start choosing a parameter,

that we denote by αm, that determinate the sign of V2k+1 (the last Lyapunov constant), i.e., if

αm > α∗m, (αm < α∗m) then V2k+1 > 0 (V2k+1 < 0), resp.. Fixing this value of αm, in the following

we consider a convenient perturbation of the next parameter, we denote by α∗m−1, that vanishes

the previous Lyapunov constant V2k−1. We consider a convenient perturbation of α∗m−1, denoted by

αm−1(ε) such that |α∗m−1 − αm−1(ε)| << ε and satisfies V2k−1 · V2k+1 < 0 and |V2k−1| << |V2k+1|.
We repeat this procedure until reach the first Lyapunov constant V1, where we consider a convenient

perturbation such that the equilibrium point be a unstable or stable focus at the system.

6.1. Technical lemmas for the heteroclinic connection occurring in system (6). In this

subsection we state and prove some lemmas where we explicitly apply Bautin’s algorithm, see [1, 6],

combined with Melnikov techniques. That is actually the very essence of the proof of Theorem 1. We

start exhibiting Bautin’s algorithm for obtaining five limit cycles which bifurcate from the center

at the origin.

Lemma 10. There exists at least five limit cycles bifurcating from the origin for system (6).

Proof. In the proof of Lemma 2 under the hypothesis d3 = 0 we obtained that: if the parameters

di’s satisfy d2 = −3d4, d1 = −6bd4

a2
− 5d6, d5 =

6d3
4ε

2

5
− 16bd6

a2
, d6 =

12a2bd3
4ε

2

5
(
7b2 − 3a4d2

4ε
2
) and d4 = 0,

then system (6) is Hamiltonian and therefore the origin is a center. Our objective here is to consider

small perturbations in these values of parameters to obtain a variation of the signs of the Lyapunov

constants and the stability of the origin.

First we consider the expression of V11 given in (14). Note that if d4 > 0, d4 < 0 then the origin is

a weak repeller focus, weak attractor focus, resp.. Without loss of generality, we assume that d4 > 0.

Consider now the expression of V9 given in (13) and the perturbation of the parameter d6 given

by d6(ε) = d62ε
2 + d63ε

3, with d62 =
12a2d3

4

35b
. Note that |d6 − d6(ε)| =

∣∣∣36a6d54
245b3

∣∣∣ ε4 + O
(
ε6
)
<< ε.

Then we obtain the new expression of

V9 = −21πb2d63ε
4

32a4
+

27πa2d5
4ε

5

280b
+

9

32
πd2

4d63ε
6.



16 R. D. EUZÉBIO, J. LLIBRE, D. J. TONON

So the sign of V9 is given by the sign of d63. Then |V9| � |V11|, and if d4 > 0 and d63 > 0 then

V9 · V11 < 0. In this way we obtain at least one limit cycle bifurcating from the origin under these

assumptions.

Consider the expression of V7 given in (12), replacing d6 by d6(ε) = d62ε
2 + d63ε

3 and d5 by

d5(ε) = d52ε
2 + d53ε

3 + d54ε
4 with d62 =

12a2d3
4

35b
, d52 = −1

7

(
30d3

4

)
and d53 = −16bd63

a2
. We have

|d5 − d5(ε)| = |d54|ε4 << ε. Therefore we obtain

V7 =
−5

64
πd54ε

5.

As in the previous case we obtain |V7| � |V9| � |V11|, and if d4 > 0, d63 > 0 and d54 < 0 then

V9 · V11 < 0 and V7 · V9 < 0. So we obtain that at least two limit cycles bifurcating from the origin.

Working similarly we consider the expression V5 given in (11), replacing d6 by d6(ε) = d62ε
2 +

d63ε
3, d5 by d5(ε) = d52ε

2 +d53ε
3 +d54ε

4 and d1 by d1(ε) = d10 +d11ε+d12ε
2 +d13ε

3 +d14ε
4 +d15ε

5

with d62 =
12a2d3

4

35b
, d52 = −1

7

(
30d3

4

)
, d53 = −16bd63

a2
, d10 = −6bd4

a2
, d11 = 0, d12 = −12a2d3

4

7b
, d13 =

−5d63 and d14 = 0, we get |d1 − d1(ε)| = |d15|ε5 << ε and

V5 = −1

8
πd15ε

6.

So we obtain that |V5| � |V7| � |V9| � |V11|, and if d4 > 0, d63 > 0, d54 < 0 and d15 > 0 then

V9 · V11 < 0, V7 · V9 < 0 and V5 · V7 < 0. So we obtain that at least three limit cycles bifurcating

from the origin.

Consider now the expression of V3 given in (10), replacing d6 by d6(ε) = d62ε
2 + d63ε

3, d5 by

d5(ε) = d52ε
2 + d53ε

3 + d54ε
4, d1 by d1(ε) = d10 + d11ε + d12ε

2 + d13ε
3 + d14ε

4 + d15ε
5 and d2 by

d2(ε) = d20 +d21ε+d22ε
2 +d23ε

3 +d24ε
4 +d25ε

5 +d26ε
6 with d62 =

12a2d3
4

35b
, d52 = −1

7

(
30d3

4

)
, d53 =

−16bd63

a2
, d10 = −6bd4

a2
, d11 = 0, d12 = −12a2d3

4

7b
, d13 = −5d63, d14 = 0, d20 = −3d4, d21 = 0, d22 =

0, d23 = 0, d24 = 0 and d25 = 0, we obtain |d2 − d2(ε)| = |d26|ε6 << ε and

V3 = −1

4
πd26ε

7.

Therefore we get that |V3| � |V5| � |V7| � |V9| � |V11|, and if d4 > 0, d63 > 0, d54 < 0, d15 > 0 and

d26 < 0 then V9 · V11 < 0, V7 · V9 < 0, V5 · V7 < 0 and V3 · V5 < 0. So we obtain that at least four

limit cycles bifurcating from the origin.

Finally, replacing d6 by d6(ε) = d62ε
2 + d63ε

3, d5 by d5(ε) = d52ε
2 + d53ε

3 + d54ε
4, d1 by d1(ε) =

d10+d11ε+d12ε
2+d13ε

3+d14ε
4+d15ε

5, d2 by d2(ε) = d20+d21ε+d22ε
2+d23ε

3+d24ε
4+d25ε

5+d26ε
6

and d3 by d3(ε) = d37ε
7, with d62 =

12a2d3
4

35b
, d52 = −1

7

(
30d3

4

)
, d53 = −16bd63

a2
, d10 = −6bd4

a2
, d11 =

0, d12 = −12a2d3
4

7b
, d13 = −5d63, d14 = 0, d20 = −3d4, d21 = 0, d22 = 0, d23 = 0, d24 = 0 and d25 = 0,

we get that |d3− d3(ε)| = |d37|ε7 << ε and the origin is a stable focus if d37 < 0 and unstable focus

if d37 > 0.

Hence we obtain that |V3| � |V5| � |V7| � |V9| � |V11|, and if d4 > 0, d63 > 0, d54 < 0, d15 >

0, d26 < 0 and d37 > 0 then V9 · V11 < 0, V7 · V9 < 0, V5 · V7 < 0 and V3 · V5 < 0. In this way we
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obtain one more limit cycle bifurcating from the origin. Therefore we get at least five limit cycles

bifurcating from the origin, concluding the proof. �

Remark 2. One could argue about the existence of more than five limit cycles inside the heteroclinic

loop. Although that situation could be realizable, usually the multiplicity of the weak focus determines

an upper bound for the number of limit cycles inside the loop. For instance, in the previous lemma

it is easy to see that the first limit cycle bifurcation from the origin, call γ, is unstable. Moreover

we are able to compare this information with the persistence or not of the heteroclinic loop. Indeed

by fixing the values of parameters for which we obtain five limit cycles, the expression of M1 from

Subsection 5.1 we get

M1 =
a8d3

4

2310
√

2b4
ε2 + O(ε3).

Since we are assuming d4 > 0 we get that M1 > 0. From Subsection 5.1 the orbit leaving p1 goes

away from γ, so by using the Poincaré-Bendixson Theorem a convenient annular region it follows

that system (6) has either no limit cycles between γ and the saddle point p1 or it appears in pairs.

So we conjecture that five is an upper bound for the number of limit cycles on the region located

between the weak focus and the saddle point.

Lemma 11. There exist a suitable choice of parameters such that system (6) has simultaneously 3

limit cycles bifurcating from the heteroclinic loop and 2 limit cycles bifurcating from the origin.

Proof. As we see in Subsection 5.1 system (6) has a heteroclinic loop Aε
1 if d2 = −12d4

7
− 5a4d5

84b2
+

a2(99d1 + 160d6)

462b
+

10bd3

a2
+O(ε). Moreover, if d1 =

40d6

33
+

2a2d5

3b
− 6d4b

a2
+

28d3b
2

a4
then the stability

of that loop is established by the sign of d5 = 6b(−100a4d6 + 231a2bd4 + 308d3b
2)/11a6. The first

part of the proof consists in changing the stability of the loop to get 2 limit cycles, and finally to

destroy the loop in order to obtain one more limit cycle. We start assuming d5 < 0 so Aε
1 is stable.

Now we write d5(ε) = d50 + εd51 with d50 = (1848b3d3 + 1386a2b2d4 − 600a4bd6)/11a6 so

(20) M1 =

∫
A1

∂Q1

∂y
dt = − a7d51

315
√
−2b7

ε2.

Consequently since a > 0 the loop Aε
1 now is defined by the sign of d51. Indeed, if d51 < 0 then the

loop changes its stability from stable to unstable and by applying Poincaré-Bendixson Theorem a

stable limit cycle emerges.

In order to obtain a new limit cycle we change again the stability of Aε
1. For doing this, consider the

expression of div(p2) =
∂Q1

∂y
considering d1(ε) a convenient perturbation of the parameter d1 given

by d1(ε) = d10 +εd11 +ε2d12 with d11 = 2a2d51/3b and d10 = (66b(70bd3 +39a2d4)−1160a4d6)/33a4,

we get

(21) div(p2) =
a2d12

7b2
ε3.

Therefore by choosing d12 < 0 the heteroclinic loop changes stability from unstable to stable and

again, by the Poincaré-Bendixson theorem, a limit cycle bifurcates from Aε
1. More precisely, that

limit cycles is unstable. Finally to obtain the third limit cycle we choose the parameters so that the

loop Aε
1 is broken. We do that considering d2(ε) = d20 + εd21 + ε2d22 + ε3d23 where now we choose
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d22 = 3a2d12/14b, d21 = a4d51/12b2 and d20 = (1980a2b2d3 + 495a2bd4 − 260a4bd6)/66a2b. Then we

obtain

M1 = − a4d23

15
√

2b2
ε3.

We see that assuming d23 6= 0 the loop is broken. Moreover, from Section 5 and since the second

limit cycle is unstable, by choosing d23 > 0 we get M1 < 0. Consequently, by the Poincaré-Bendixson

Theorem we obtain a third limit cycle which is stable. Therefore we obtain three limit cycles by

using Melnikov method. Moreover, for ε positive and sufficiently small we have that the expression

of equations (20) and (21) have opposite sign and |div(p2)| � |M1|. It means that the change of

stability of Aε
1 are only local so we can apply the Poincaré-Bendixson Theorem to obtain the limit

cycles.

The proof of the lemma follows by applying the same approach used in Lemma 10 having now

fixed the values d5(ε) = d50 +εd51, d1(ε) = d10 +εd11 +ε2d12 and d2(ε) = d20 +εd21 +ε2d22 +ε3d23.

That is, it can be obtained two more limit cycles but now bifurcating from the origin of system

(6) so we get 5 limit cycles for such a system. The simultaneity occurs because at each step the

obtained limit cycles are hyperbolic so they remain by assuming perturbations of the parameters

involving higher orders of ε. �

Lemma 12. There exist a suitable choice of parameters such that system (6) has s limit cycles bifur-

cating from the origin and m limit cycles bifurcating from the heteroclinic loop with s ∈ {0, 1, 3, 4, 5},
m ∈ {0, 1, 2} and s+m ≤ 5.

Proof. The proof of this Lemma 12 is straightforward by using the same construction of Lemmas

10 and 11. �

6.2. Technical lemmas for the homoclinic connection occurring in system (7). We now

state similar results but concerning system (7). Again we obtain limit cycles bifurcating from the

center and from the homoclinic loops considering convenient values of the parameters of system (7).

In addition we also consider some symmetry in system (7) so that limit cycles may emerge in pairs.

Lemma 13. There exists at least four limit cycles bifurcating from the origin of system (7).

Proof. In the proof of Lemma 3 under the hypothesis e3 = 0 and e2 =
4a2be1 − 48a4e5

b2
we obtain

that: if the parameters ei satisfies the conditions e1 = −
3
(
b2e4 − 16a4e5

)
4a2b

, e6 =
8a4e5 + 3b2e4

5a2b
, e5 =

−
3
(
a4e3

4ε
2 + 8b2e4

)
44a4

and e4 = 0 then the system (7) is Hamiltonian and therefore the origin is a

center.

Similarly we did in the proof of Lemma 10, we will consider small perturbations in these values

of parameters to obtain a variation of the sign of the Lyapunov constants and the stability of the

origin.

The signal of V9, given in (19), is given by the sign of e4. Therefore, if e4 > 0, e4 < 0, resp., then

the origin is a weak repeller focus, weak attractor focus, resp.. Without loss of generality we assume

that e4 > 0. Consider the expression of V7 given in (18) and the perturbation of the parameter e5
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given by e5(ε) = e50 + e52ε
2, with

e50 = −6b2e4

11a4
,

we obtain |e5 − e5(ε)| =
∣∣∣∣(−3e3

4

44
− e52

)∣∣∣∣ ε2 << ε and

V7 =
1

32
πε3

(
3e3

4 + 44e52

)
.

So the sign of V7 is given by the sign of 3e3
4 + 44e52. Then |V7| � |V9| and if e4 > 0 and e52 < − 3

44e
3
4

then V7 ·V9 < 0. Therefore we conclude that at least one limit cycle bifurcating from the origin with

these assumptions.

Consider the expression of V5 given in (17) and replacing e6 by e6(ε) = e60 + e62ε
2 + e63ε

3 and e5

by e50 +e52ε
2, with e50 = −6b2e4

11a4
, e60 = − 3be4

11a2
and e62 =

8a2e52

5b
. We get |e6−e6(ε)| = |e63|ε3 << ε

and

V5 = −5

8
πe63ε

4.

Then |V5| � |V7| � |V9|, and if e4 > 0, e52 < − 3
44e

3
4 and e63 < 0 then V7 · V9 < 0 and V5 · V7 < 0.

So we obtain that at least two limit cycles bifurcating from the origin.

Consider the expression of V3 given in (16), replacing e6 by e6(ε) = e60 + e62ε
2 + e63ε

3, e5 by

e5(ε) = e50 +e52ε
2 and e1 by e1(ε) = e10 +e14ε

4, with e50 = −6b2e4

11a4
, e60 = − 3be4

11a2
and e62 =

8a2e52

5b

and e10 = −321be4

44a2
therefore |e1 − e1(ε)| = |e14|ε4 << ε and

V3 = −πa
2e14ε

5

b
.

So we obtain that |V3| � |V5| � |V7| � |V9| and if e4 > 0, e52 < − 3
44e

3
4, e63 < 0 and e14 > 0 then

V7 · V9 < 0, V5 · V7 < 0 and V3 · V5 < 0, then we obtain that at least three limit cycles bifurcating

from the origin.

Finally, replacing e6 by e6(ε) = e60+e62ε
2+e63ε

3, e5 by e5(ε) = e50+e52ε
2, e1 by e1(ε) = e10+e14ε

4

and e3 by e3(ε) = e36ε
6, with e50 = −6b2e4

11a4
, e60 = − 3be4

11a2
and e62 =

8a2e52

5b
and e10 = −321be4

44a2
, we

get that |e3 − e3(ε)| = |e36|ε6 << ε and the origin is a stable focus if e36 < 0 and unstable focus if

e36 > 0.

Hence we obtain that |V3| � |V5| � |V7| � |V9| � |V11|, and if e4 > 0, e52 < − 3
44e

3
4, e63 < 0, e14 >

0 and e36 > 0 then V7 · V9 < 0, V5 · V7 < 0, V3 · V5 < 0 with V3 < 0 and the origin an unstable focus.

In this way we obtain one more limit cycle bifurcating from the origin. Therefore we get at least

four limit cycles bifurcating from the origin, concluding the proof. �

Lemma 14. There exist a suitable choice of parameters such that system (7) has 4 limit cycles

bifurcating from the homoclinic loop and 2 limit cycles bifurcating from the origin.

Proof. The proof of the lemma is similar to the proof of Lemma 11, so we only highlight some

minor differences between them. Indeed, we perform replacements of the parameters e5, e1 and e2

in terms of order 1, 2 and 3 in ε, analogously to what we have done for the parameters d5, d1 and

d2 in Lemma 11. Through the replacement of e5 we change the stability of the homoclinic loop Lε1.



20 R. D. EUZÉBIO, J. LLIBRE, D. J. TONON

Applying the Poincaré-Bendixson Theorem in the convenient annular regions, one of them internal

to Lε1 and other one external to it, we obtain a limit cycle in each annulus. Proceeding in a complete

analogous way we obtain two more limit cycles from the replacement of the parameter e1. Therefore,

we get four limit cycles. In order to obtain the fifth limit cycle, we destroy the loop of Lε1 doing the

referred replacement in the parameter e2. In this case whatever is the sign of M2 (see Section 5.1)

we obtain a limit cycle, being internal if M2 < 0 and external to it otherwise. In any case we obtain

five limit cycles bifurcating from the homoclinic loop. To obtain the two limit cycle bifurcating from

the weak focus we proceed as in Lemma 13. �

6.3. Proof of Theorem 1. As commented before, the proof of Theorem 1 consists in apply the

lemmas from Subsection 6.1. We remark that in the proof of the lemmas we obtain limit cycles of

opposite stability for the cases a > 0, b < 0 and a > 0, b < 0 assuming that d3 = 0 and e3 = 0,

respectively. Then one more limit cycle bifurcates by suitable perturbations of d3 and e3, respec-

tively, preserving the already obtained limit cycles.

• Proof of statement (a): Assume that a > 0 and b < 0. The configurations (s, 0) with

s ∈ {0, 1, . . . , 5} follows from Lemma 10. The case s = 2 and m = 3 follows from Lemma 11. The

remaining configurations (s,m),m ∈ {1, 2, 3} and s+m ≤ 5 follows from Lemma 12. The proof of

the case a > 0 and b < 0 is then completed since the configurations of limit cycles of systems (5)

and (6) are the same.

Realization of the maximal ciclicity and simultaneity of limit cycles: We notice that the sharper

lower bound of 5 limit cycles when a > 0 and b < 0 can be obtained by the configurations (s,m)

given by (5, 0), (4, 1), (3, 2) and (2, 3). The simultaneity is achieved in four out of the five situations.

• Proof of statement (b): Now assume that a < 0 and b > 0. We proceed in a similar way to the

previous case but now the double homoclinic loop plays a role. In what concerns the configurations

of limit cycle bifurcating from the weak focus, after a translation of p1 to the origin, configurations

(2s, k) with s ∈ {0, 1, . . . , 4}, k ∈ {0, 1, 2} follows from both Lemma 13 and by symmetry with

respect to the y−axis, see Remark 3. Now we prove the other configurations of limit cycles. First,

the configuration (2s, 3m),m ∈ {1, 2} is obtained by Lemma 14 because every internal limit cycle

bifurcating from the homoclinic loop appears pairwise due to the symmetry.

Therefore, each one of the first two steps of the proof of Lemma 14 generates three limit cycles,

being one external and two internal, so we get 3m medium limit cycles with m = 1, 2. The 2s small

limit cycles of the configuration (2s, 3m) follows also from Lemma 14 and symmetry. Finally the

configuration (2s, 3m + k) is obtained from the previous cases and observing that the value of k

is determined from the break of the homoclinic loop. That break could generate no limit cycles

(k = 0), one external medium limit cycle (k = 1), or two internal medium limit cycles by using

symmetry (k = 2), see Lemma 14.

Realization of the maximal ciclicity and simultaneity of limit cycles: In this case the maximal

ciclicity of 12 limit cycles in obtained in only one situation which corresponds to a configuration of
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simultaneity between small and medium limit cycles. Indeed, the configuration 2s + 3m + k = 12

can be obtained with s = m = k = 2, represented by the pair (2, 10). This is precisely the situation

of Lemma 14 after applying the symmetry.

The cases 2s + 3m + k < 12 are obtained similarly from the other lemmas from the current

section. Finally we notice that the configurations of limit cycles after and before the translation of

system (7) are clearly preserved. The same results can be obtained for system (5) with a < 0 and

b > 0. So we are done.

Remark 3. We finish remarking some aspects of Theorem 1 that must be clarified.

(I) It does not provide any information about configurations having more than three medium

limit cycles. Indeed to obtain such configurations one should take into account higher orders

of Melnikov function, which is not considered in this paper.

(II) The value k is determined by breaking the loop, then an extra limit cycle can emerge. When

a limit cycle takes place, if such a loop is broken in such way that a limit cycle appears

internally, then by the symmetry we have a second limit cycle and in this case k = 2.

Otherwise, we get an externally limit cycle so in this case k = 1.
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