Mestrado em Modelagem e Otimização - RC/UFG

Modelagem Computacional

Aula 5²

Prof. Thiago Alves de Queiroz

1/34

²[Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010.

Métodos de Múltiplos Passos

- Os métodos discutidos anteriormente são chamados de métodos de passos simples, uma vez que a aproximação do ponto t_{i+1} ocorre somente a partir do ponto t_i.
- Observe que a aproximação é obtida nos pontos t_0, t_1, \ldots, t_i antes de obter em t_{i+1} .
- Além disso, o erro |w_j y(t_j)| tende a crescer com j, daí a necessidade de usar mais informações anteriores para aproximar em t_{i+1}.
- Métodos que usam a aproximação em mais de um ponto anterior para aproximar nos próximos pontos são chamados de métodos de múltiplos passos.

Métodos de Múltiplos Passos

• **Definição.** Um *método de múltiplos passos com m-passos* para resolver um problema de valor inicial:

$$y' = f(t, y), a \le t \le b, y(a) = \alpha,$$

tem a equação de diferenças para aproximar em t_{i+1} dada por:

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \cdots + a_0w_{i+1-m} + h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \cdots + b_0f(t_{i+1-m}, w_{i+1-m})],$$

para $i=m-1,m,\ldots,N-1$, sendo $h=\frac{b-a}{N}$, as constantes a_0,a_1,\ldots,a_{m-1} e b_0,b_1,\ldots,b_m , e os valores iniciais conhecidos:

$$w_0 = \alpha, \ w_1 = \alpha_1, \ w_2 = \alpha_2, \dots, w_{m-1} = \alpha_{m-1}.$$

• Quando $b_m = 0$, o método é chamado de *explícito*, pois w_{i+1} é obtido explicitamente em termos dos valores anteriores.

Métodos de Múltiplos Passos

- Quando $b_m \neq 0$, o método é chamado de *implícito*, pois w_{i+1} ocorre em ambos os lados, sendo obtido implicitamente.
- As equações, para i = 3, 4, ..., N 1, definem o *método de Adams-Bashforth de Quarta Ordem* explícito:

$$w_0 = \alpha, \ w_1 = \alpha_1, \ w_2 = \alpha_2, \ w_3 = \alpha_3,$$

$$w_{i+1} = w_i + \frac{h}{24} \left[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right].$$
(2)

 As equações, para i = 2,3,..., N − 1, definem o método de Adams-Moulton de Quarta Ordem implícito:

$$\mathbf{W}_0 = \alpha, \ \mathbf{W}_1 = \alpha_1, \ \mathbf{W}_2 = \alpha_2,$$
 (3)

$$w_{i+1} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]. \tag{4}$$

4/34

• Os valores inicias em w_0, w_1, \ldots podem ser especificados usando algum método de passo simples, como Runge-Kutta.

- **Exemplo.** Calcule as aproximações em w_4 , para t = 0, 8 e w_5 , para t = 1, 0, usando o método de Adams-Bashforth de Quarta Ordem, sabendo que $w_0 = 0, 5$, $w_1 \approx 0,8292933$, $w_2 \approx 1,2140762$ e $w_3 \approx 1,6489220$. O tamanho do passo é h = 0, 2 e o problema é: $y' = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0, 5.
- **Resposta.** Observando a eq. (1), tem-se: $w_4 = w_3 + \frac{h}{24} [55f(t_3, w_3) 59f(t_2, w_2) + 37f(t_1, w_1) 9f(t_0, w_0)],$ $w_4 = 1,6489220 + \frac{0.2}{24} [55f(0,6;1,6489220) 59f(0,4;1,2140762) + 37f(0,2;0,8292933) 9f(0;0,5)],$ $w_4 = 2,1272892.$
- Sabendo que o valor exato é y(0,8) = 2,1272295, tem-se o erro absoluto:
 - |2,1272295-2,1272892|=0,0000597.

- Para t = 1 e w_5 , tem-se: $w_5 = w_4 + \frac{h}{24}[55f(t_4, w_4) - 59f(t_3, w_3) + 37f(t_2, w_2) - 9f(t_1, w_1)],$ $w_5 = 2,1272892 + \frac{0.2}{24}[55f(0, 8; 2, 1272892) - 59f(0, 6; 1, 6489220) + 37f(0, 4; 1, 2140762) - 9f(0, 2; 0, 8292933)],$ $w_5 = 2,6410533.$
- Sabendo que o valor exato é y(0,8) = 2,6408591, tem-se o erro absoluto: |2,6408591 2,6410533| = 0,000194.
- A derivação de um método de múltiplos passos considera que:

$$y(t_{i+1}) = y(t_i) + \int_{t_i}^{t_{i+1}} f(t, y(t)) dt.$$
 (5)

• Note que seria preciso saber a solução y(t). Todavia, considera-se um polinômio interpolador P(t) que aproxima f(t, y(t)) nos pontos previamente conhecidos $(t_0, w_0), (t_1, w_1), \ldots, (t_i, w_i)$.

Métodos do tipo Adams

 A derivação dos métodos de Adams explícitos seguem o procedimento anterior de usar um polinômio interpolador P(t) que aproxima f(t, y(t)), sendo que o erro de truncamento local é da forma:

$$\tau_{i+1}(h) = \frac{y(t_{i+1}) - a_{m-1}y(t_i) - \dots - a_0y(t_{i+1-m,i})}{h}$$

$$- [b_m f(t_{i+1}, y(t_{i+1})) + \dots + b_0 f(t_{i+1-m,y(t_{i+1-m})})],$$
 (6)

para cada i = m - 1, m, ..., N - 1.

 Para o método de Adams-Bashforth de Quarta Ordem explícito, o erro de truncamento local é:

$$\tau_{i+1}(h) = \frac{251}{720} h^4 y^{(5)}(\mu_i), \text{ para algum } \mu_i \in (t_{i-3}, t_{i+1}).$$
 (8)

Métodos do tipo Adams

- A derivação dos métodos de Adams implícitos consideram um polinômio interpolador P(t) que aproxima $f(t_{i+1}, f(t_{i+1}, y(t_{i+1})))$ na integral $\int_{t_i}^{t_{i+1}} f(t, y(t)) dt$.
- Para o método de Adams-Moulton de Quarta Ordem implícito, o erro de truncamento local é:

$$au_{i+1}(h) = -\frac{19}{720}h^4y^{(5)}(\mu_i), \text{ para algum } \mu_i \in (t_{i-2}, t_{i+1}).$$
 (9)

- É interessante comparar um método explícito de Adams-Bashforth de m-passos com um método implícito de Adams-Moulton de (m-1)-passos.
- Neste caso, ambos envolvem m avaliações de f por passo e possuem no erro de truncamento local o termo $h^m y^{(m+1)}(\mu_i)$.
- Geralmente, o coeficiente no erro de truncamento local envolvendo f é menor nos métodos implícitos do que nos explícitos.

• **Exemplo.** Derive as equações para obter o termo w_{i+1} usando o método implícito e explícito do tipo Adams de Quarta Ordem para o seguinte problema:

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0, 5$.
Sabendo que a solução exata é $y(t) = (t+1)^2 - 0, 5e^t$ e $h = 0, 2$, obtenha as aproximações iniciais por ela.

• **Resposta.** Para i = 3, 4, ..., 9, que substituindo h = 0, 2, $t_i = 0, 2i$ e f(t, y) na equação de diferenças do método de Adams-Bashforth de Quarta Ordem resulta em:

$$\begin{array}{l} w_{i+1} = \\ \frac{1}{24}[35w_i - 11, 8w_{i-1} + 7, 4w_{i-2} - 1, 8w_{i-3} - 0, 192i^2 - 0, 192i + 4, 736]. \end{array}$$

• Para $i=2,3,\ldots,9$ substituindo na equação de diferenças do método de Adams-Moulton de Quarta Ordem chega-se em: $w_{i+1}=\frac{1}{22,2}[27,8w_i-w_{i-1}+0,2w_{i-2}-0,192i^2-0,192i+4,736].$

Métodos Preditores-Corretores

- Os métodos implícitos possuem uma fraqueza: converter a equação de diferenças numa forma algébrica com a representação explícita de w_{i+1}.
- Uma alternativa seria utilizar o método de Newton para aproximar w_{i+1} e, assim, considerar os métodos implícitos.
- Por isso, os métodos implícitos acabam sendo usados para melhorar as aproximações obtidas a partir dos métodos explícitos.
- A combinação de um método explícito para aproximar e o método implícito para melhorar a aproximação resulta no método Preditor-Corretor.
- No caso dos métodos de Quarta Ordem, usa-se um método de passo simples, como Runge-Kutta, para obter os valores iniciais w₀, w₁, w₂ e w₄.

Métodos Preditores-Corretores

• O próximo passo é calcular a aproximação w_{4p} usando o método explícito de Adams-Bashforth como preditor:

$$w_{4p} = w_3 + \frac{h}{24} [55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)].$$
(10)

• Essa aproximação é então melhorada ao considerar w_{4p} no lado direito do método implícito de Adams-Moulton (corretor):

$$w_4 = w_3 + \frac{h}{24} [9f(t_4, w_{4p}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1)].$$
 (11)

- Observe que é preciso avaliar apenas $f(t_4, w_{4p})$ no corretor, uma vez que f já foi avaliada nos outros pontos no preditor.
- Uma forma de melhorar a precisão da aproximação é utilizar um tamanho de passo menor do que considerar um corretor de ordem mais alta.

Método Preditor-Corretor de Adams de Quarta Ordem

INPUT endpoints a, b; integer N; initial condition α .

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set
$$h = (b-a)/N$$
;
 $t_0 = a$;
 $w_0 = \alpha$;
OUTPUT (t_0, w_0) .

Step 2 For i = 1, 2, 3, do Steps 3–5. (Compute starting values using Runge-Kutta method.)

Step 3 Set
$$K_1 = hf(t_{i-1}, w_{i-1});$$

 $K_2 = hf(t_{i-1} + h/2, w_{i-1} + K_1/2);$
 $K_3 = hf(t_{i-1} + h/2, w_{i-1} + K_2/2);$
 $K_4 = hf(t_{i-1} + h, w_{i-1} + K_3).$

Step 4 Set
$$w_i = w_{i-1} + (K_1 + 2K_2 + 2K_3 + K_4)/6$$
; $t_i = a + ih$.

Step 5 OUTPUT (t_i, w_i) .

Método Preditor-Corretor de Adams de Quarta Ordem

Step 6 For
$$i = 4, ..., N$$
 do Steps 7-10.

Step 7 Set $t = a + ih$;

 $w = w_3 + h[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]/24$; (Predict w_i .)

 $w = w_3 + h[9f(t, w) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1)]/24$. (Correct w_i .)

Step 8 OUTPUT (t, w) .

Step 9 For $j = 0, 1, 2$

set $t_j = t_{j+1}$; (Prepare for next iteration.)

 $w_j = w_{j+1}$.

Step 10 Set $t_3 = t$;

 $w_3 = w$.

Step 11 STOP.

- Exemplo. Calcule a aproximação w_4 , para t=0,8, usando o método de Preditor-Corretor de Adams de Quarta Ordem, sabendo que $w_0=0,5,~w_1\approx 0,8292933,~w_2\approx 1,2140762$ e $w_3\approx 1,6489220$. O tamanho do passo é h=0,2 e o problema é: $y'=y-t^2+1,~0\leq t\leq 2,~y(0)=0,5$.
- Resposta. Primeiro, calcula-se o preditor pelo método de Adam-Bashforth:

$$w_{4p} = w_3 + \frac{h}{24}[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)],$$

 $w_{4p} = 1,6489220 + \frac{0.2}{24}[55f(0, 6; 1,6489220) - 59f(0, 4; 1,2140762) + 37f(0, 2; 0,8292933) - 9f(0; 0, 5)],$
 $w_{4p} = 2,1272892.$

 Agora, considera-se o valor de w_{4p} no corretor pelo método de Adams-Moulton:

$$w_4 = w_3 + \frac{h}{24}[9f(t_4, w_{4p}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1)],$$

 $w_4 = 1,6489220 + \frac{0.2}{24}[9f(0, 8; 2, 1272892) + 19f(0, 6; 1,6489220) - 5f(0, 4; 1,2140762) + f(0, 2; 0,8292933)],$
 $w_4 = 2,1272056.$

 Um sistema de m-ésima ordem de problemas de valor inicial tem a forma:

$$\frac{du_1}{dt} = f_1(t, u_1, u_2, \dots, u_m),$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots, u_m),$$

$$\vdots$$

$$\frac{du_m}{dt} = f_m(t, u_1, u_2, \dots, u_m),$$

para $a \le t \le b$, com as condições iniciais:

$$u_1(a) = \alpha_1, \ u_2(a) = \alpha_2, \dots, \ u_m(a) = \alpha_m.$$

- O objetivo é encontrar m funções $u_1(t), u_2(t), \ldots, u_m(t)$ que satisfaz o sistema de equações diferenciais.
- **Definição.** A função $f(t, y_1, ..., y_m)$ definida no conjunto:

$$D = \{(t, u_1, \dots, u_m) | a \leq t \leq b \text{ e } -\infty < u_i < \infty, \text{ para cada } i = 1, 2, \dots, m\},\$$

satisfaz a condição de Lipschitz em D nas variáveis u_1, u_2, \dots, u_m se existe uma constante L > 0 com:

$$|f(t, u_1, \dots, u_m) - f(t, z_1, \dots, z_m)| \le L \sum_{j=1}^m |u_j - z_j|,$$
 (12)

para todo (t, u_1, \ldots, u_m) e (t, z_1, \ldots, z_m) em D.

- Note que o Teorema do Valor Médio pode ser usado: se f e suas derivadas parciais de primeira ordem são contínuas em D e: $|\frac{\partial f(t,u_1,\dots,u_m)}{\partial u_i}| \leq L$, para cada $i=1,2,\dots,m$ e todos $(t,u_1,\dots,u_m) \in D$, então f satisfaz a condição de Lipschitz em D com constante de Lipschitz f
- **Teorema.** Seja $f_i(t, u_1, \ldots, u_m)$, para cada $i = 1, 2, \ldots, m$, contínua e satisfazendo a condição de Lipschitz em: $D = \{(t, u_1, \ldots, u_m) | a \le t \le b \text{ e } -\infty < u_i < \infty, \text{ para cada } i = 1, 2, \ldots, m\}$. Então, o sistema de equações diferenciais anterior sujeito as condições iniciais dadas tem solução única $u_1(t), \ldots, u_m(t)$, para a < t < b.

- Adiante será feita extensão do método de Runge-Kutta da Quarta Ordem para resolver sistemas de equações diferenciais.
- Seja um inteiro N > 0 e o passo $h = \frac{b-a}{N}$. Assim, o intervalo [a, b] é particionado em N subintervalos com os pontos $t_j = a + jh$, para cada $j = 0, 1, \dots, N$.
- Usa-se a notação w_{ij} , para cada $j=0,1,\ldots,N$ e $i=1,2,\ldots,m$ para denotar a aproximação a $u_i(t_j)$.

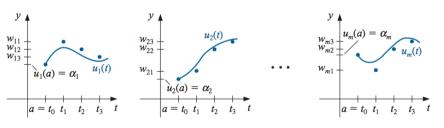


Figura: Aproximação por Runke-Kutta de cada uma das *m* equações diferenciais.

• Sejam as condições iniciais $w_{1,0}=\alpha_1, w_{2,0}=\alpha_2, \ldots, w_{m,0}=\alpha_m$ e que os valores $w_{1,j}, w_{2,j}, \ldots, w_{m,j}$ foram computados. Obtém-se $w_{1,j+1}, w_{2,j+1}, \ldots, w_{m,j+1}$:

$$\begin{aligned} k_{1,i} &= hf_i(t_j, w_{1,j}, w_{2,j}, \dots, w_{m,j}), \\ k_{2,i} &= hf_i\left(t_j + \frac{h}{2}, w_{1,j} + \frac{1}{2}k_{1,1}, w_{2,j} + \frac{1}{2}k_{1,2}, \dots, w_{m,j} + \frac{1}{2}k_{1,m}\right), \\ k_{3,i} &= hf_i\left(t_j + \frac{h}{2}, w_{1,j} + \frac{1}{2}k_{2,1}, w_{2,j} + \frac{1}{2}k_{2,2}, \dots, w_{m,j} + \frac{1}{2}k_{2,m}\right), \\ k_{4,i} &= hf_i\left(t_j + h, w_{1,j} + k_{3,1}, w_{2,j} + k_{3,2}, \dots, w_{m,j} + k_{3,m}\right), \\ w_{i,j+1} &= w_{i,j} + \frac{1}{6}(k_{1,i} + 2k_{2,i} + 2k_{3,i} + k_{4,i}). \end{aligned}$$
 para cada $i = 1, 2, \dots, m$.

• Observe que todos os valores $k_{1,1}, k_{1,2}, \dots, k_{1,m}$ devem ser calculados antes de prosseguir para $k_{2,i}$ (e assim por diante).

Método de Runge-Kutta para Sistemas de Equações Diferenciais

INPUT endpoints a, b; number of equations m; integer N; initial conditions $\alpha_1, \ldots, \alpha_m$.

OUTPUT approximations w_j to $u_j(t)$ at the (N+1) values of t.

Step 1 Set
$$h = (b - a)/N$$
; $t = a$.

Step 2 For
$$j = 1, 2, ..., m$$
 set $w_i = \alpha_i$.

Step 3 OUTPUT
$$(t, w_1, w_2, \ldots, w_m)$$
.

Step 4 For
$$i = 1, 2, ..., N$$
 do steps 5–11.

Step 5 For
$$j = 1, 2, ..., m$$
 set $k_{1,j} = h f_j(t, w_1, w_2, ..., w_m)$.

Step 6 For
$$j = 1, 2, ..., m$$
 set $k_{2,j} = h f_j(t + \frac{h}{2}, w_1 + \frac{1}{2}k_{1,1}, w_2 + \frac{1}{2}k_{1,2}, ..., w_m + \frac{1}{2}k_{1,m}).$

Método de Runge-Kutta para Sistemas de Equações Diferenciais

Step 7 For
$$j = 1, 2, ..., m$$
 set
$$k_{3,j} = hf_j \left(t + \frac{h}{2}, w_1 + \frac{1}{2}k_{2,1}, w_2 + \frac{1}{2}k_{2,2}, ..., w_m + \frac{1}{2}k_{2,m} \right).$$

Step 8 For
$$j = 1, 2, ..., m$$
 set $k_{4,j} = h f_j(t+h, w_1 + k_{3,1}, w_2 + k_{3,2}, ..., w_m + k_{3,m}).$

Step 9 For
$$j = 1, 2, ..., m$$
 set $w_j = w_j + (k_{1,j} + 2k_{2,j} + 2k_{3,j} + k_{4,j})/6$.

Step 10 Set
$$t = a + ih$$
.

Step 11 OUTPUT
$$(t, w_1, w_2, \ldots, w_m)$$
.

Step 12 STOP.

• **Exemplo.** Resolva o sistema de equações diferenciais ordinárias abaixo, sabendo que $l_1(0) = 0$, $l_2(0) = 0$ e h = 0, 1, para obter $w_{1,1}$ e $w_{2,1}$.

$$l'_1 = f_1(t, l_1, l_2) = -4l_1 + 3l_2 + 6,$$

 $l'_2 = f_2(t, l_1, l_2) = -2, 4l_1 + 1, 6l_2 + 3, 6.$

 Resposta. Aplicando o método de Runge-Kutta de Quarta Ordem, tem-se:

$$\begin{split} w_{1,0} &= I_1(0) = 0 \text{ e } w_{2,0} = I_2(0) = 0, \\ k_{1,1} &= hf_1(t_0, w_{1,0}, w_{2,0}) = 0, 6, \\ k_{1,2} &= hf_2(t_0, w_{1,0}, w_{2,0}) = 0, 36, \\ k_{2,1} &= hf_1(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{1,1}, w_{2,0} + \frac{1}{2}k_{1,2}) = 0, 534, \\ k_{2,2} &= hf_2(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{1,1}, w_{2,0} + \frac{1}{2}k_{1,2}) = 0, 3168, \end{split}$$

Obtendo os demais valores:

$$k_{3,1} = hf_1(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{2,1}, w_{2,0} + \frac{1}{2}k_{2,2}) = 0,54072,$$
 $k_{3,2} = hf_2(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{2,1}, w_{2,0} + \frac{1}{2}k_{2,2}) = 0,321264,$
 $k_{4,1} = hf_1(t_0 + h, w_{1,0} + k_{3,1}, w_{2,0} + k_{3,2}) = 0,4800912,$
 $k_{4,2} = hf_2(t_0 + h, w_{1,0} + k_{3,1}, w_{2,0} + k_{3,2}) = 0,28162944,$

Resultando em:

$$w_{1,1} = w_{1,0} + \frac{1}{6}(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1}) = 0,5382552,$$

 $w_{2,1} = w_{2,0} + \frac{1}{6}(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2}) = 0,3196263.$

• Sendo a solução exata $I_1(t) = -3,375e^{-2t} + 1,875e^{-0,4t} + 1,5$ e $I_2(t) = -2,25e^{-2t} + 2,25e^{-0,4t}$, tem-se o erro absoluto: $erro_1 = 0,00008285$, $erro_2 = 0,00005803$.

Equações Diferencias de Ordem Superior

- Muitas situações reais envolvem problemas de valor inicial cujas equações têm ordem maior do que um.
- Não é preciso novas técnicas. Basta fazer uma redução de ordem da equação diferencial em um sistema de equações de primeira ordem.
- Um problema de valor inicial de *m*-ésima ordem:

$$y^{(m)}(t) = f(t, y, y', \dots, y^{(m-1)}), \ a \le t \le b,$$
 (13)

com condições iniciais $y(a) = \alpha_1, y'(a) = \alpha_2, \dots, y^{(m-1)}(a) = \alpha_m$ pode ser convertido em um sistema de equações diferenciais de primeira ordem.

• Seja $u_1(t) = y(t), u_2(t) = y'(t), \dots$, e $u_m(t) = y^{(m-1)}(t)$.

Equações Diferencias de Ordem Superior

O seguinte sistema de equações de primeira ordem é obtido:

$$\frac{du_1}{dt} = \frac{dy}{dt} = u_2, \ \frac{du_2}{dt} = \frac{dy'}{dt} = u_3, \ \cdots, \ \frac{du_{m-1}}{dt} = \frac{dy^{(m-2)}}{dt} = u_m,$$

$$\frac{du_m}{dt} = \frac{dy^{(m-1)}}{dt} = y^{(m)} = f(t, y, y', \dots, y^{(m-1)}) = f(t, u_1, u_2, \dots, u_m),$$

Com as condições iniciais:

$$u_1(a) = y(a) = \alpha_1, \ u_2(a) = y'(a) = \alpha_2, \dots, \ u_m(a) = y^{(m-1)}(a) = \alpha_m.$$

 Exemplo. Transforme o problema de valor inicial de segunda ordem:

$$y'' - 2y' + 2y = e^{2t}\sin(t)$$
, para $0 \le t \le 1$, com $y(0) = -0, 4$ e $y'(0) = -0, 6$,

em um sistema de problemas de valor inicial de primeira ordem. Use o método de Runge-Kutta de quarta ordem com h = 0, 1 para aproximar em t = 0, 1.

• **Resposta.** Seja $u_1(t) = y(t)$ e $u_2(t) = y'(t)$. Assim, tem-se o sistema:

$$u_1'(t)=u_2(t),$$
 $u_2'(t)=e^{2t}\sin(t)-2u_1(t)+2u_2(t),$ com as condições iniciais $u_1(0)=-0,4$ e $u_2(0)=-0,6.$

• As condições iniciais fornecem: $w_{1,0} = -0, 4$ e $w_{2,0} = -0, 6$. Segue que:

$$\begin{array}{l} k_{1,1} = h f_1(t_0, w_{1,0}, w_{2,0}) = h w_{2,0} = -0,06, \\ k_{1,2} = h f_2(t_0, w_{1,0}, w_{2,0}) = h [e^{2t_0} \sin(t_0) - 2w_{1,0} + 2w_{2,0}] = -0,04, \\ k_{2,1} = h f_1(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{1,1}, w_{2,0} + \frac{1}{2}k_{1,2}) = -0,062, \\ k_{2,2} = h f_2(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{1,1}, w_{2,0} + \frac{1}{2}k_{1,2}) = -0,03247644757, \end{array}$$

Continuando...

$$\begin{array}{l} k_{3,1} = hf_1(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{2,1}, w_{2,0} + \frac{1}{2}k_{2,2}) = -0,06162832238, \\ k_{3,2} = hf_2(t_0 + \frac{1}{2}h, w_{1,0} + \frac{1}{2}k_{2,1}, w_{2,0} + \frac{1}{2}k_{2,2}) = -0,03152409237, \\ k_{4,1} = hf_1(t_0 + h, w_{1,0} + k_{3,1}, w_{2,0} + k_{3,2}) = -0,06315240924, \\ k_{4,2} = hf_2(t_0 + h, w_{1,0} + k_{3,1}, w_{2,0} + k_{3,2}) = -0,02178637298, \end{array}$$

Resultando em:

$$w_{1,1} = w_{1,0} + \frac{1}{6}(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1}) = -0,4617333423,$$

 $w_{2,1} = w_{1,0} + \frac{1}{6}(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2}) = -0,6316312421.$

• Sendo a solução exata $u_1(t) = 0, 2e^{2t}(\sin(t) - 2\cos(t))$ e $u_2(t) = 0, 2e^{2t}(4\sin(t) - 3\cos(t))$, tem-se o erro absoluto: $erro_1 = 0,00000037$, $erro_2 = 0,000000775$.

- Os métodos empregados anteriormente possuem um termo de erro que envolve uma derivada de alta ordem da solução da equação.
- Nos casos em que essa derivada pode ser limitada superiormente, torna-se possível predizer um limite para o erro.
- Mesmo se a derivada cresce conforme o tamanho do passo cresce (e o valor da solução também), o erro pode ser controlado.
- Por outro lado, quando a magnitude da derivada cresce, mas o valor da solução não, o erro pode ser crescer demasiadamente e dominar os cálculos.
- Problemas de valor inicial em que o erro domina os cálculos são denominados de rígidos, sendo comuns no estudo de sistemas mecânicos, químicos e elétricos.

- Equações diferenciais rígidas são caracterizadas como aquelas cuja solução possui um termo e^{-ct}, sendo c uma constante positiva grande.
- Como a n-ésima derivada deste termo tem magnitude $c^n e^{-ct}$, a derivada não decresce tão rapidamente.
- Na verdade, a derivada relacionada ao termo do erro cresce (rapidamente) a medida que t cresce.
- Por exemplo, ao aplicar o método de Euler, Runge-Kutta de quarta Ordem e Preditor-Corretor de Adams em: y' = -30y, $0 \le t \le 1,5$, $y(0) = \frac{1}{3}$, com h = 0,1 e querendo a solução em t = 1,5, chega-se a:
 - Solução exata: 9,54173 x 10⁻²¹;
 - Método de Euler: −1, 09225 × 10⁴;
 - ▶ Método de Runge-Kutta: 3,95730 × 10¹;
 - ► Método Preditor-Corretor: 8,03840 × 10⁵.

 Um método que é "estável" e pode ser aplicado em equações rígidas é o Trapezoidal implícito:

$$w_0 = \alpha,$$

 $w_{j+1} = w_j + \frac{h}{2} [f(t_{j+1}, w_{j+1}) + f(t_j, w_j)], \ 0 \le j \le N-1.$

- O método Trapezoidal implícito não fornece aproximações precisas para passos h grandes.
- A obtenção do termo w_{j+1} pode requerer a resolução de uma equação/sistema não linear, tal que o método de Newton é geralmente usado.
- Assim, tendo computado t_j , t_{j+1} e w_j , precisa-se obter w_{j+1} que é solução de:

$$F(w) = w - w_j - \frac{h}{2}[f(t_{j+1}, w) + f(t_j, w_j)] = 0.$$
 (14)

• Para aproximar a eq. (14), seleciona-se $w_{j+1}^{(0)} = w_j$ e gera-se $w_{j+1}^{(k)}$ aplicando o método de Newton:

$$w_{j+1}^{(k)} = w_{j+1}^{(k-1)} - \frac{w_{j+1}^{(k-1)} - w_j - \frac{h}{2}[f(t_j, w_j) + f(t_{j+1}, w_{j+1}^{(k-1)})]}{1 - \frac{h}{2}f_y(t_{j+1}, w_{j+1}^{(k-1)})}$$
(15)

até que $|w_{i+1}^{(k)} - w_{i+1}^{(k-1)}|$ seja suficientemente pequeno.

- Geralmente três ou quatro iterações do método de Newton são suficientes para obter uma boa aproximação.
- O método da Secante pode ser utilizado como alternativa ao método de Newton, sendo preciso duas aproximações iniciais distintas para w_{j+1}.

Método Trapezoidal Implícito com Iteração de Newton

INPUT endpoints a, b; integer N; initial condition α ; tolerance TOL; maximum number of iterations M at any one step.

OUTPUT approximation w to y at the (N + 1) values of t or a message of failure.

$$t = a;$$

 $w = \alpha;$
OUTPUT (t, w) .
Step 2 For $i = 1, 2, ..., N$ do Steps 3–7.
Step 3 Set $k_1 = w + \frac{h}{2}f(t, w);$
 $w_0 = k_1;$
 $j = 1;$
 $FLAG = 0.$

Step 1 Set h = (b-a)/N;

Método Trapezoidal Implícito com Iteração de Newton

Step 4 While FLAG = 0 do Steps 5–6.

Step 5 Set
$$w = w_0 - \frac{w_0 - \frac{h}{2}f(t+h, w_0) - k_1}{1 - \frac{h}{2}f_y(t+h, w_0)}$$
.
Step 6 If $|w - w_0| < TOL$ then set $FLAG = 1$

Step 6 If
$$|w - w_0| < TOL$$
 then set $FLAG = 1$
else set $j = j + 1$;
 $w_0 = w$;
if $j > M$ then
OUTPUT ('The maximum number of
iterations exceeded');

STOP.

Step 7 Set
$$t = a + ih$$
;
OUTPUT (t, w) .

Step 8 STOP.

• **Exemplo.** O problema de valor inicial rígido adiante tem solução $y(t) = t - e^{-5t}$. Resolva com o método Trapezoidal implícito com iteração de Newton e o método de Runge-Kutta de quarta ordem para h = 0,25 e h = 0,2.

 $y' = 5e^{5t}(y-t)^2 + 1$, para $0 \le t \le 1$, com y(0) = -1.

• Resposta. Observe a tabela com os resultados numéricos:

	Runge–Kutta Method $h = 0.2$		Trapezoidal Method $h = 0.2$	
t_i	w_i	$ y(t_i)-w_i $	w_i	$ y(t_i)-w_i $
0.0	-1.0000000	0	-1.0000000	0
0.2	-0.1488521	1.9027×10^{-2}	-0.1414969	2.6383×10^{-2}
0.4	0.2684884	3.8237×10^{-3}	0.2748614	1.0197×10^{-2}
0.6	0.5519927	1.7798×10^{-3}	0.5539828	3.7700×10^{-3}
0.8	0.7822857	6.0131×10^{-4}	0.7830720	1.3876×10^{-3}
1.0	0.9934905	2.2845×10^{-4}	0.9937726	5.1050×10^{-4}
	h = 0.25		h = 0.25	
t_i	w_i	$ y(t_i)-w_i $	w_i	$ y(t_i)-w_i $
0.0	-1.0000000	0	-1.0000000	0
0.25	0.4014315	4.37936×10^{-1}	0.0054557	4.1961×10^{-2}
0.5	3.4374753	3.01956×10^{0}	0.4267572	8.8422×10^{-3}
0.75	1.44639×10^{23}	1.44639×10^{23}	0.7291528	2.6706×10^{-3}
1.0	Overflow		0.9940199	7.5790×10^{-4}