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Os avanços matemáticos, que foram obtidos a duras custas com a ajuda de
mestres e amigos brilhantes, não foram alcançados sem um grande apoio de
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RESUMO

Nesta tese são estudados conjuntos minimais de campos de vetores suaves e

descont́ınuos em dimensões 2 e 3. Primeiramente, restringimos o estudos de

conjuntos minimais a ciclos limite e respondemos questões sobre existência,

distribuição e quantidade de tais objetos em campos de vetores suaves e

descont́ınuos em dimensão 3. Posteriormente, abordamos a existência de

conjuntos minimais não triviais e caos em dimensão 2 para campos de vetores

descont́ınuos. Apresentamos exemplos de conjuntos minimais não triviais e

verificamos a presença de caos não determińıstico em alguns destes conjuntos.

Finalmente, apresentamos uma versão do Teorema de Poincaré-Bendixson

para campos de vetores descont́ınuos que não apresentam regiões de deslize

e escape.

Palavras-chave: Campos de vetores descont́ınuos. Conjuntos minimais. Caos

não determińıstico. Teorema de Poincaré-Bendixson.
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ABSTRACT

In this thesis minimal sets of smooth and non-smooth vector fields in di-

mension 2 and 3 are studied. First the study of minimal sets is restricted

to limit cycles. Questions about existence, distribution and quantity of such

objects in smooth and non-smooth vector fields in dimension 3 are answered.

Later, the existence of non-trivial minimal sets and chaos in dimension 2 is

treated for non-smooth vector fields. Some examples of non-trivial minimal

sets are presented and the presence of non-deterministic chaos on some of

these sets is verified. Finally, a version of the Poincaré-Bendixson Theorem

for non-smooth vector fields presenting neither escaping nor sliding motion

is presented.

Keywords: Non-smooth vector fields. Minimal sets. Non-deterministic

chaos. Poincaré-Bendixson Theorem.
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Introdução

Conjuntos minimais são importantes objetos da teoria clássica dos sistemas

dinâmicos e tem sido estudados exaustivamente ao longo das últimas décadas.

Em particular, dentro do contexto de fluxo de campos de vetores planares,

conjuntos minimais são parte essencial dos conjuntos limite e são descritos

pelo clássico Teorema de Poincaré-Bendixson. Em um contexto mais am-

plo, contudo, conjuntos minimais de sistemas suaves podem ser toros com

fluxo irracional ou mesmo outros conjuntos mais abstratos caracterizados

principalmente pela presença de recorrência não trivial. A existência de tais

objetos é garantida pelo Lema de Zorn (veja, por exemplo, [53]), que per-

mite concluir que todo conjunto compacto e invariante pelo fluxo de um dado

sistema possui um (sub)conjunto minimal. Não obstante, para campos de

vetores de classe C2 definidos sobre certas variedades, o Teorema de Denjoy-

Schwartz caracteriza os conjuntos minimais: eles são pontos de equiĺıbrio,

órbitas periódicas e toros, e são comumente chamados de conjuntos mini-

mais triviais.

No contexto dos conjuntos minimais triviais, encontrar ciclos limite, isto

é, orbitas periódicas isoladas do conjunto das órbitas periódicas do sistema

considerado, é um dos tópicos mais abordados da teoria qualitativa dos sis-

temas dinâmicos. Ciclos limite são importantes não apenas como um sig-

nificativo ente matemático dentro da teoria de sistemas dinâmicos senão

também nas aplicações de caracter prático. De fato, ciclos limite hiperbólicos,

principalmente aqueles que são estáveis, tem um papel muito importante em

modelos reais no sentido que eles imprimem estabilidade em tais modelos.

Não por acaso, encontrar tais objetos é o objetivo de um famoso problema

dentro do universo matemático, a saber, o 16o Problema de Hilbert.
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O 16o Problema de Hilbert, problema este apresentado em duas partes,

foi elaborado pelo matemático alemão David Hilbert e apresentado junto

a outros 22 problemas durante a Conferência Internacional de Matemáti-

cos de Paris, ocorrida durante 1900. Embora existam conexões entre as

duas partes do referido problema (mais especificamente, que trata dos ciclos

limite algébricos), a segunda parte toca diretamente à teoria dos sistemas

dinâmicos e versa sobre a cota superior e a posição relativa de ciclos limite

em sistemas polinomiais planares de grau n (veja [36]), sendo um dos poucos

problemas ainda em aberto da lista apresentada por Hilbert. De fato, embora

exista uma extensa relação de trabalhos contendo muitos resultados parciais

interessantes sobre o tema, até o momento nenhuma resposta completa foi

alcançada, mesmo no caso n = 2 (veja, por exemplo, [45] e as referências

contidas neste artigo), embora se saiba que existe uma quantidade finita

de ciclos limite neste caso particular (veja [27] e [38]). Atualmente, para

sistemas quadráticos conjectura-se que o número máximo de ciclos limite

seja 4 (3 ciclos limite em torno de um foco e 1 em torno de outro foco; veja

[69]), mas não existe qualquer prova para esta conjectura até o momento.

Não obstante, devido a dificuldade em resolver o 16o Problema de Hilbert,

um novo problema foi proposto pelo matemático russo Vladimir Arnol’d, a

saber, o estudo da cota superior para o número de ciclos limite que bifurcam

de um equiĺıbrio do tipo centro, conhecido como versão fraca do 16o Problema

de Hilbert (veja [1] e [2]). Com efeito, atualmente muitos trabalhos relaciona-

dos a localizar e quantificar ciclos limite são dedicados à versão proposta por

Arnol’d e, para este caso particular, alguns resultados podem ser encontrados

em [21] e [37]. Mais especificamente, o número máximo de ciclos limite que

podem bifurcar de um cont́ınuo de órbitas periódicas preenchendo um aberto

do plano R2 coincide com o número de zeros da integral abeliana de primeira

ordem associada ao sistema em questão, um método baseado na aplicação

de primeiro retorno de Poincaré (veja [4] e [57] para integrais abelianas).

Outro método baseado na aplicação de Poincaré é a função de bifurcação de

Malkin (veja Seção 3 do Caṕıtulo 1), que sob certas hipóteses coincide com o

método do averaging, ferramenta muito utilizada na literatura para estudar

a versão fraca do 16o Problema de Hilbert. Para outros resultados baseados
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na aplicação de Poincaré, ver os trabalhos de Bogoliubov, Fatou, Krylov,

Malkin, Poincaré, Pontryagin e Roseau, entre outros, bem como o livro de

Sanders, Verhulst e Murdock ([5], [6], [32], [51], [55], [56], [58] e [59]).

Por outro lado, conjuntos minimais não triviais ocorrem em ambientes

onde o campo de vetores possui regularidade mais baixa que aquela exigida

pelo Teorema de Denjoy-Schwartz, ou seja, campos de vetores de classe C1,

suaves por partes (de classe C0) ou mesmo descont́ınuos (exemplos de conjun-

tos minimais não triviais de um campo de vetores de classe C1 podem ser en-

contrados em [23] e de campos descont́ınuos em [12] e [13]). Deveras, sistemas

descont́ınuos tem recebido muita atenção recentemente, principalmente de-

vido ao fato que tais sistemas podem apresentar fenômenos pouco usuais ou

mesmo que não ocorrem em sistemas suaves, bem como uma dinâmica mais

rica e elaborada.

O estudo de sistemas descont́ınuos é bastante recente e tem atráıdo a

atenção pelo caracter prático que assume em áreas como f́ısica, engenharia

elétrica e teoria do controle. Com efeito, o estudo de tais sistemas tem

mostrado que os mesmos fornecem uma modelagem muito mais realista em

aplicações do que aquelas governadas por sistemas suaves. Em resumo, em

sistemas descont́ınuos supõe-se a existência de uma superf́ıcie Σ de codi-

mensão 1, chamada de superf́ıcie de descontinuidade, separando o retrato de

fases em duas ou mais partes disjuntas (com exceção de Σ), sendo que em

cada uma das partes está definido um campo de vetores e sob a superf́ıcie Σ

estão definidos os campos de vetores adjacentes. Portanto, sobre pontos de

Σ temos definidos dois campos de vetores.

Embora existam diferentes maneiras de definir um campo de vetores des-

cont́ınuos, tem-se destacado a chamada convenção de Filippov, que determina

o algoritmo para definir um campo de vetores sobre Σ (veja [33]). Por vezes, a

um sistema descont́ınuos dizemos sistema de Filippov. Mais detalhes podem

ser encontrados na Seção 2 do Caṕıtulo 1 deste texto e referências conti-

das nesta seção. Baseados nesta convenção, muitos autores tem contribuido

para o estudo de sistemas descont́ınuos. Apesar disso, a teoria é relativa-

mente nova e existe uma necessidade latente de estabelecer boas definições
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e traduzir resultados da teoria clássica para o universo descont́ınuo. Neste

sentido, um dos pontos iniciais da teoria dos sistemas descont́ınuos data de

1977 com o trabalho de Teixeira (veja [63]) sobre sistemas suaves em var-

iedades bi-dimensionais com bordo. Mais tarde, outros trabalhos como [8],

[33] e [41] também deram contribuições significativas à teoria, bem como mais

recentemente os trabalhos [3] e [67].

Atualmente, ademais, já se conhece a validade de alguns resultados prove-

nientes da teoria clássica dentro do contexto dos sistemas descont́ınuos. Por

exemplo, o Teorema de Existência e Unicidade não é válido, uma vez que

não existe unicidade de soluções nas regiões onde está definido o campo de

Filippov (para mais detalhes, ver Seção 1.2 do Caṕıtulo 1). Por outro lado,

sobre certas condições, é sabido que o Teorema de Peixoto e o Teorema de

Poincaré-Bendixson possuem versões para sistemas descont́ınuos (ver [13] e

[50], respectivamente). Outros aspectos de sistemas descont́ınuos ao qual

muitos pesquisadores desta área tem se dedicado é a teoria das bifurcações,

com relativo destaque aos trabalhos de Teixeira (veja, por exemplo, [64], [65]

e [66]).

Conjuntos minimais também tem sido intensamente estudados em sis-

temas descont́ınuos, tendo, contudo, grande atenção voltada aos conjuntos

minimais triviais, embora o conceito de trivial possa ser ligeiramente diferen-

te neste contexto. De fato, muitos trabalhos tem sido dedicados a encontrar

órbitas periódicas e ciclos limite (também chamados, no cenário descont́ınuo,

de pseudo ciclos ou ciclos canard) em sistemas descont́ınuos, principalmente

através do estudo das bifurcações que ocorrem nestes sistemas. Vale ressaltar

que tem-se verificado a ocorrência de um número maior de ciclos limite em

sistemas descont́ınuos do que em seus análogos suaves (veja, por exemplo,

[17] ou o Caṕıtulo 3 desta tese), o que evidencia a riqueza dinâmica dos sis-

temas descont́ınuos e também motiva a busca por conjuntos minimais. Para

um exemplo espećıfico, basta notar que enquanto sistemas lineares suaves

não possuem ciclos limite, em sistemas lineares descont́ınuos (isto é, sistemas

descont́ınuos compostos apenas por campos de vetores lineares) podemos ve-

rificar a co-existência de até 3 ciclos limite (veja, por exemplo, [7], [19] e

[44]).
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Uma maneira eficiente de buscar conjuntos minimais triviais em sistemas

descont́ınuos é através de perturbações descont́ınuas de pontos de equiĺıbrio

do tipo centro, um problema muito parecido com aquele proposto por Arnol’d

para sistemas suaves. Em verdade, métodos clássicos como o método da

função de bifurcação de Malkin e o método do averaging já possuem versões

para sistemas com baixa regularidade do campo de vetores e permitem en-

contrar ciclos limite neste contexto (ver [10], [11] e [43]). Contudo, embora

estes e muitos outros trabalhos abordem o tema dos conjuntos minimais triv-

iais, tem sido praticamente inexplorado o tema dos conjuntos minimais não

triviais em sistemas descont́ınuos.

Para aqueles sistemas planares que não apresentam movimento deslizante

(ou seja, que não possuem um campo de vetores de Filippov definido), em

[13] prova-se uma versão do Teorema de Poincaré-Bendixson que garante que

para tais sistemas existem apenas conjuntos minimais triviais (ver Caṕıtulo

6). Ainda em [13], são apresentados exemplos de conjuntos minimais não

triviais em sistemas descont́ınuos (ver Caṕıtulos 4 e 5 desta tese). Desde que

sistemas suaves planares possuem apenas conjuntos minimais triviais, tais

exemplos representam mais uma diferença entre sistemas suaves e descont́ı-

nuos. Vale ressaltar que os exemplos apresentados em [13] e posteriormente

em [12] possuem uma rica dinâmica e algumas de suas propriedades con-

tradizem conceitos básicos da teoria de conjuntos minimais para sistemas

suaves, como o fato de sistemas minimais estarem contidos nos conjuntos

limites, dentre outras contradições, como a existência de órbitas não densas

no conjunto minimal. Por outro lado, em R3, surgem evidências da existência

de conjuntos minimais não triviais em [22], embora os autores não tenham

provado tal fato. Em todo caso, acredita-se que os exemplos apresentados em

[13] e [12] sejam os primeiros exemplos na literatura de conjuntos minimais

não triviais em sistemas descont́ınuos.

Outro aspecto observado recentemente em sistemas descont́ınuos autônomos

é a ocorrência de caos no caso planar e a relação entre conjuntos minimais não

triviais e sistemas caóticos (veja [12]). De fato, em [12] mostra-se que campos

de vetores planares descont́ınuos definidos sobre certos conjuntos minimais

(chamados conjuntos minimais orientados; veja Caṕıtulos 4 e 5) não trivi-
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ais com medida positiva sempre apresentam comportamento caótico. Vale

ressaltar que, em sistemas planares suaves, a ocorrência de caos não é per-

mitida devido ao Teorema da Curva de Jordan. Entretanto, as primeiras

evidências de sistemas descont́ınuos caóticos surgem nos trabalhos de Jeffrey

em R3 (veja, por exemplo, [22] e [39]). Além disso, em [39] Jeffrey também

apresenta um exemplo de um sistema descont́ınuo com simetria em R2 apre-

sentando caos. Portanto, mesmo no contexto planar, sistemas descont́ınuos

podem apresentar certos comportamentos não presentes em sistemas suaves,

como são os exemplos de conjuntos minimais não triviais e caos.

Na sequência apresentamos uma breve descrição dos caṕıtulos da pre-

sente tese e evidenciamos a contribuição desta para os temas introduzidos

previamente. Paralelamente, apresentamos os principais resultados obtidos.

Descrição dos caṕıtulos e dos resultados principais

Apresentamos aqui uma breve descrição dos caṕıtulos e enunciamos os

principais resultados presentes nesta tese. A enumeração dos resultados obe-

dece aquela que aparece no texto, em sua versão traduzida do inglês.

O primeiro caṕıtulo desta tese está divido em três seções e apresenta

os principais conceitos, métodos e ferramentas utilizadas através do texto.

Na primeira seção, introduzimos a definição formal de conjuntos minimais

triviais e não triviais, enunciamos alguns resultados clássicos relacionados a

este tema e discorremos brevemente sobre alguns pontos espećıficos no sentido

de contextualizá-los na tese. Na sequência, apresentamos uma seção contendo

um resumo das principais definições e conveções de sistemas descont́ınuos

segundo Filippov, definindo alguns entes desta teoria que tocam ao objetivo

da presente tese. Outros resultados de sistemas descont́ınuos, que não serão

utilizados durante este texto, são deixados através das referências contidas

nesta introdução e na referida seção. Finalmente, na última seção do Caṕıtulo

1, apresentamos dois resultados de caracter técnico baseados na função de

bifurcação de Malkin e que serão utilizados, respectivamente, nos Caṕıtulos

2 e 3.
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Na sequência, o segundo caṕıtulo traz condições suficientes para a exis-

tência de conjuntos minimais em um sistema em três dimensões, a saber, o

sistema de Vallis. Tal sistema possui uma grande similaridade com o sistema

de Lorenz e portanto apresenta objetos em comum tais como atratores es-

tranhos e conjuntos compactos invariantes, embora não tenha sido relatada a

existência de conjuntos minimais não triviais em tal sistema (veja [40], [42],

[62] e [68]). Vale dizer que tampouco a existência de conjuntos minimais tri-

viais foi estudada neste sistema, de tal forma que apenas um trabalho relata

a existência de uma órbita periódica proveniente de uma bifurcação de Hopf

para uma versão autônoma do sistema de Vallis (veja [62]). No Caṕıtulo 2,

contudo, encontramos cinco órbitas periódicas distintas desta última a qual

citamos. Os detalhes deste caṕıtulo estão publicados no periódico Discrete

and Continuous Dynamical Systems - Series A, veja [28].

Este caṕıtulo apresenta, ademais, um método de reescalonamento que

permite aplicar a teoria do averaging em sistemas não perturbados (outros

artigos utilizando a mesma metodologia podem ser encontrados em [29] e

[49]).

O sistema de Vallis é dado por

dx

dt
= −ax+ by + ap(t),

dy

dt
= −y + xz,

dz

dt
= −z − xy + 1,

(1)

onde p(t) é uma função T -periódica de classe C 1 e os parâmetros a e b são

positivos. O sistema (1) é chamado sistema de Vallis.

Considere agora I dado pela integral

I =

∫ T

0

p(s)ds,

e a função

J(t) =

∫ t

0

p(s)ds,
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satisfazendo J(T ) = I.

Os resultados a seguir fornecem condições suficientes para a existência de

5 ciclos limite no sistema de Vallis em função dos parâmetros do sistema,

da função p(t) e do peŕıodo T , bem como a suas localizações aproximadas e

estabilidade. Observe que, desde que o sistema (1) não depende de ε, os ciclos

limite também não dependem deste parâmetro. Por este motivo, utilizamos

o śımbolo “≈”, que significa que o ciclo limite está muito perto do ponto que

possui aquelas coordenadas. Portanto, os ciclos limites descritos através dos

próximos resultados são ciclos de pequena amplitude. Os resultados são os

seguintes:

Teorema 2.1. Para I ≠ 0 e a ≠ b o sistema de Vallis (1) tem uma solução

T -periódica (x(t), y(t), z(t)) tal que

(x(t), y(t), z(t)) ≈
(

aI

T (a− b)
,

aI

T (a− b)
, 1

)
,

Além disso esta solução periódica é estável se a > b e instável se a < b.

Teorema 2.2. Para I ≠ 0 o sistema de Vallis (1) tem uma solução T -

periódica (x(t), y(t), z(t)) tal que

(x(t), y(t), z(t)) ≈
(
−aI

Tb
,−aI

Tb
, 1

)
,

Além disso, esta solução periódica é sempre instável.

Teorema 2.3. Para I ≠ 0 o sistema de Vallis (1) tem uma solução T -

periódica (x(t), y(t), z(t)) tal que

(x(t), y(t), z(t)) ≈
(
I

T
,
I

T
, 1

)
,

Além disso, esta solução periódica é sempre estável.

Teorema 2.4. Para I ≠ 0 o sistema de Vallis (1) tem uma solução T -
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periódica (x(t), y(t), z(t)) tal que

(x(t), y(t), z(t)) ≈
(
I

T
, 0, 1

)
,

Além disso, esta solução periódica é sempre estável.

Teorema 2.5. Considere I = 0 e J(t) ≠ 0 quando 0 < t < T . Então o

sistema de Vallis (1) possui uma solução T -periódica (x(t), y(t), z(t)) tal que

(x(t), y(t), z(t)) ≈
(
− a

T

∫ T

0

J(s)ds, 0, 1

)
,

Além disso, esta solução periódica é sempre estável.

Ainda neste caṕıtulo, é provado que, através do método utilizado para

provar os resultados (veja Seção 1.3 do Caṕıtulo 1) e usando os reescalona-

mentos
x = εm1X, y = εm2Y, z = εm3Z,

p(t) = εn1P (t), a = εn2A, b = εn3B,
(2)

o sistema de Vallis não possui nenhum outro ciclo limite diferente dos 5

apresentadas previamente, quaisquer que sejam a, b, mi, ni, para i = 1, 2, 3.

No Caṕıtulo 3 são estudados os conjuntos minimais que bifurcam de um

sistema que possui um cilindro preenchido por órbitas periódicas quando este

cilindro é perturbado por funções descont́ınuas. Em particular, este trabalho

é um dos primeiros a lidar com perturbação de variedades preenchidas por

órbitas periódicas, diferentes de equiĺıbrios do tipo centro, via funções des-

cont́ınuas. Ressaltamos que mesmo considerando perturbações cont́ınuas,

existem poucos trabalhos na literatura levando-se em conta que o conjunto

perturbado não é um equiĺıbrio do tipo centro, citamos [46], [47] e [48].

Em particular, neste caṕıtulo fazemos uma generalização de [48] para uma

classe maior de cilindros e considerando perturbações descont́ınuas em vez de

cont́ınuas. Os resultados obtidos relatam a existência e fornecem a localização

de conjuntos minimais triviais de sistemas descont́ınuos localizados sobre

uma variedade bi-dimensional diferente de um aberto do plano. Os detalhes
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deste caṕıtulo foram submetidos a um periódico especializado e podem ser

encontrados em [17].

Observamos que a situação descrita previamente configura um problema

similar a aquele proposto por Arnol’d em um contexto mais geral, uma vez

que leva-se em conta não apenas órbitas periódicas que bifurcam de um

equiĺıbrio do tipo centro senão de qualquer superf́ıcie bi-dimensional.

Outra contribuição importante deste caṕıtulo é apresentar em detalhes

e, até onde sabemos, pela primeira vez, um caso concreto onde aplica-se o

método apresentado em [11] e detalhado na Seção 1.3 do Caṕıtulo 1. Este

método, baseado na função de bifurcação de Malkin, tem a vantagem de

permitir que a perturbação feita a uma superf́ıcie (qualquer) preenchida por

órbitas periódicas seja de classe C0, o que encontra grande aplicação dentro

da teoria dos sistemas descont́ınuos.

O sistema com o qual trabalhamos é apresentado na sequência.

ẋ = −y + x(x2 + y2 − 1),

ẏ = x+ y(x2 + y2 − 1),

ż = h(x, y).

(3)

Observamos que o cilindro C = {(x, y, z) ∈ R3 : x2 + y2 = 1} é invariante

para o sistema (3). Ainda, se a função h é escrita como

h(x, y) = ρ(x, y)(xφ(x2, y2) + xy χ(x2, y2) + y ψ(x2, y2)),

de tal forma que ρ(x, y) satisfaz ρ(r cos θ, r sin θ) = 1 para r = 1 em coorde-

nadas ciĺındricas, então por cada ponto sobre o cilindro C passa uma órbita

periódica, ou seja, C está preenchido por órbitas periódicas do sistema (3).

Devido a geometria das órbitas sobre o cilindro, dividiremos o espaço

R3 em duas partes, Σ+ e Σ−, através de uma superf́ıcie de descontinuidade

Σ, de tal forma que cada órbita periódica do cilindro contenha partes em

Σ+ e Σ−. Portanto Σ deve ser qualquer plano que contenha o eixo z. No

nosso caso, para simplificar os cálculos, escolheremos Σ como sendo o plano

y = 0. Consequentemente, faremos uma perturbação no sistema (3) da
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seguinte maneira: considere agora as funções g± = (p±, q±, r±) dadas por

p±(x, y, z) =
∑

i+j+k≤m

a±ijkx
iyjzk,

q±(x, y, z) =
∑

i+j+k≤n

b±ijkx
iyjzk,

r±(x, y, z) =
∑

i+j+k≤p

c±ijkx
iyjzk,

(4)

com i, j, k,m, n, p ∈ N e aijk, bijk, cijk ∈ R, ∀i, j, k ∈ N. Além disso, considere

a função

g(x, y, z) =
1

2
(g+(x, y, z) + g−(x, y, z)) +

1

2
sgn(y)(g+(x, y, z)− g−(x, y, z)),

e observe que a expressão da função g é diferente dependendo do sinal de y.

Portanto, a perturbação do sistema (3) através da função g gera um sistema

descont́ınuos tendo y = 0 como região de descontinuidade Σ.

Agora considere as funções

Ah(θ) = cos θ
∂h

∂x
(cos θ, sin θ) + sin θ

∂h

∂y
(cos θ, sin θ) (5)

e

Mδ(z) =

∫ 2π

0

−1

2

[
h(cos θ, sin θ)(− cos θ(q+(ς) + q−(ς))

+ sin θ(p+(ς) + p−(ς))) + (r+(ς) + r−(ς))+

(h(cos θ, sin θ)(cos θ(−q+(ς) + q−(ς)) + sin θ(p+(ς)−

p−(ς))) + (r+(ς)− r−(ς)))ϕδ(sin θ)] ds,

(6)

com ς =
(
cos θ, sin θ, z +

∫ s

0 h(cos v, sin v)dv
)
e z algum valor real. Então

valem os seguintes resultados.

Teorema 3.2. Assuma que Ah(θ) = 0, ∀ θ ∈ [0, 2π). Então, para |ε| su-
ficientemente pequeno e, para cada z0 tal que Mδ(z0) = 0 e M ′

δ(z0) ≠ 0,

o sistema descont́ınuo gerado pela ε-perturbação do sistema (3) através da
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função g possui um ciclo limite bifurcando do cont́ınuo de soluções periódicas

do cilindro C com ε = 0. Além disso, existem no máximo s = max{m,n, p}
valores de z para os quais Mδ(z) = 0.

Teorema 3.3. Assuma que Ah(θ) = 0, ∀ θ ∈ [0, 2π), g+ = g− e considere a

função

M δ(z) =

∫ 2π

0

−
[
h(cos θ, sin θ)(− cos θq+(ς) + sin θp+(ς)) + r+(ς)

]
ds,

(7)

onde ς =
(
cos θ, sin θ, z +

∫ s
0 h(cos v, sin v)dv

)
e z é algum valor real. Então,

para |ε| suficientemente pequeno e, para cada z0 tal que M δ(z0) = 0 e M
′

δ(z0)

≠ 0, o sistema suave gerado pela ε-perturbação do sistema (3) através da

função g possui um ciclo limite bifurcando do cont́ınuo de soluções periódicas

do cilindro C com ε = 0. Além disso, existem no máximo s = max{m,n, p}
valores de z para os quais Mδ(z) = 0.

Neste caṕıtulo também apresentamos dois exemplos comparando os re-

sultados sobre o número de ciclos limite que podem bifurcar de C através

de perturbações suaves e descont́ınuas e mostramos que a quantidade destes

objetos é maior no caso de perturbações descont́ınuas.

O Caṕıtulo 4 aborda os conjuntos minimais não triviais em sistemas

planares descont́ınuos. Algumas definições são traduzidas da teoria clássica

dos sistemas dinâmicos para o contexto dos sistemas dinâmicos descont́ınuos.

Em particular, exibimos exemplos que indicam que não podemos generalizar

os teoremas de Poincaré-Bendixson e Denjoy-Schwartz sem hipóteses extras

sobre o campo de vetores descont́ınuos. Depois, no Caṕıtulo 6, fornecemos

condições necessárias para a não ocorrência de conjuntos minimais não trivi-

ais e classificamos os conjuntos limites e minimais (triviais) em sistemas des-

cont́ınuos sob as referidas condições. Suspeita-se que os exemplos fornecidos

neste caṕıtulo são os primeiros exemplos de conjuntos minimais não triviais

em sistemas descont́ınuos.

Neste caṕıtulo também introduzimos a ideia de conjuntos minimais ori-

entados ou minimalidade orientada, isto é, conjuntos positivo-minimais e/ou

negativo-minimais para um dado campo de vetores descont́ınuos Z. Tais
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conceitos permitem distinguir importantes objetos da teoria dos sistemas

descont́ınuos que não são minimais mas que, no entanto, apresentam ca-

racteŕısticas como compacidade e invariância em certo sentido. Dentre tais

objetos, por um lado estão os pseudo equiĺıbrios e os pseudo ciclos que pos-

suem regiões de deslize e, por outro, estão certos conjuntos com medida de

Lebesgue positiva. Em particular, mostramos que se um conjunto é positivo-

minimal e negativo-minimal, então tal conjunto é minimal, e fornecemos

exemplos que evidenciam que a rećıproca deste resultado não é verdadeira.

Mais tarde, no Caṕıtulo 5, apresentamos um importante teorema que rela-

ciona sistemas descont́ınuos caóticos com conjuntos que são ao mesmo tempo

positivo-minimais e negativo-minimais.

O próximo teorema exibe um exemplo de conjunto minimal não trivial.

Note que tal conjunto possui medida de Lebesgue positiva.

Teorema 4.1. Considere o campo de vetores descont́ınuos Z = (X, Y ) com

X(x, y) = (1,−2x) e Y (x, y) = (−2, 4x3 − 2x), onde {y = 0} é a região de

descontinuidade. Então o conjunto

Λ = {(x, y) ∈ R
2;−1 ≤ x ≤ 1 e x4/2− x2/2 ≤ y ≤ 1− x2}. (8)

é um conjunto minimal não trivial para o sistema descont́ınuo q̇ = Z(q).

Durante o Caṕıtulo 4 veremos também que Λ é um conjunto positivo-

minimal e negativo-minimal, simultaneamente. Na sequência, os próximos

dois teoremas fornecem exemplos de conjuntos minimais e também os clas-

sifica como positivo-minimais e/ou negativo-minimais. Observe, além disso,

que tais teoremas também fornecem conjuntos com medida de Lebesgue posi-

tiva. Conjuntos minimais com tal propriedade serão chamados de não triviais

ao longo do caṕıtulo 4.

Teorema 4.2. Considere o campo de vetores descont́ınuos Z1 = (X, Y ), com

X(x, y) = (1,−2x+ 1) e Y (x, y) = (−1, (−2 + x)(−22 + x(−7 + 4x))), onde

{y = 0} é a região de descontinuidade. Então o conjunto

Λ1 = {(x, y) ∈ R2;−3 ≤ x ≤ 4 e

(−4 + x)(−2 + x)2(3 + x) ≤ y ≤ −(−4 + x)(3 + x)}.
(9)
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é um conjunto minimal não trivial para o sistema descont́ınuo q̇ = Z1(q). No

entanto, Λ1 não é positivo-minimal nem negativo-minimal para este sistema

descont́ınuo.

Teorema 4.3. Considere o campo de vetores descont́ınuo Z2 que possui o

retrato de fases (restrito ao conjunto Λ2 destacado) apresentado na Figura

1 onde {y = 0} é a região de descontinuidade. Então o conjunto Λ2 é um

conjunto positivo-minimal e também minimal não trivial para o sistema des-

cont́ınuo q̇ = Z2(q). No entanto, Λ2 não é negativo-minimal para este sistema

descont́ınuo.

p0

p1

p̃ p2

p3

p4
Σ

Figura 1: Conjunto minimal não trivial Λ2.

Os detalhes deste caṕıtulo fazem parte de dois artigos, um deles sub-

metido para publicação a um periódico especializado e outro aceito para

publicação no periódico Ergodic Theory and Dynamical Systems (veja [13] e

[12], respectivamente).

No Caṕıtulo 5 tratamos de sistemas planares descont́ınuos que apresentam

comportamento caótico sobre conjuntos minimais não triviais. Introduzimos

os conceitos relacionados a caos para sistemas descont́ınuos e relacionamos

caos em tais sistemas com o conceito de minimalidade orientada introduzida

no Caṕıtulo 4. Suspeita-se que minimalidade orientada seja uma condição

mais forte que caoticidade, uma vez que existem sistemas planares caóticos

sobre certos conjuntos que não são minimais (veja exemplo em [39]), enquanto

minimalidade orientada sob certas hipóteses garante condições suficientes

para a existência de caos. Tais condições são explicitadas no Teorema 5.7

que apresentamos na sequência.
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O conteúdo deste caṕıtulo revela que, como comentado anteriormente,

sistemas descont́ınuos podem apresentar caos mesmo em dimensão 2. Além

disso, neste caṕıtulo são apresentados exemplos de sistemas caóticos sem

simetria ou presença de pontos canard (veja seção 1.2 do caṕıtulo 1), diferente

do exemplo de Jeffrey em [39].

A seguir apresentamos os principais resultados do Caṕıtulo 5. O Teorema

5.4 nos diz que o campo de vetores descont́ınuos Z apresentado no Teorema

4.6 é caótico sobre o conjunto Λ.

Teorema 5.4. Considere o campo de vetores descont́ınuo Z = (X, Y ), com

X(x, y) = (1,−2x) e Y (x, y) = (−2, 4x3 − 2x), onde Σ = {y = 0}. Então o

sistema descont́ınuo q̇ = Z(q) é caótico sobre o conjunto compacto invariante

Λ = {(x, y) ∈ R
2;−1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}.

Analogamente, o próximo teorema versa sobre a caoticidade do sistema

descont́ınuo Z2 apresentado no Teorema 4.8, sobre o conjunto Λ2.

Teorema 5.6. Considere o campo de vetores descont́ınuo Z2 e o conjunto

compacto invariante Λ2 como apresentado no Teorema 4.8. Então Z2 é

caótico sobre Λ2.

Observamos que embora o conjunto Λ apresentado nos Teoremas 4.6 e 5.4

possua uma certa simetria e a coincidência de pontos de tangências viśıveis

e inviśıveis (que nesta tese chamaremos estrutura canard), o conjunto Λ2

apresentado previamente não possui qualquer destas caracteŕısticas. Enten-

demos que este é o primeiro exemplo de um sistema planar caótico sobre um

conjunto sem qualquer tipo de simetria.

Na sequência denotamos por mes(·) a medida de Lebesgue. O próximo

resultado fornece uma condição suficiente para a existência de caos em sis-

temas planares descont́ınuos.

Teorema 5.7. Seja Z um sistema planar descont́ınuo e Λ ⊂ R2 um con-

junto compacto invariante. Se Λ é um conjunto positivo-minimal e negativo-

minimal para Z satisfazendo mes(Λ) > 0, então Z é caótico sobre Λ.
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Salientamos que o exemplo apresentado por Jeffrey em [39] apresenta

um exemplo de sistema planar descont́ınuo caótico que não é positivo/nega-

tivo-minimal ou mesmo minimal, ainda que tal conjunto tenha medida de

Lebesgue positiva. Isto evidencia o fato de que a rećıproca do Teorema 5.7

não é verdadeira.

Os resultados obtidos no Caṕıtulo 5 estão aceitos para publicação no

periódico Ergodic Theory and Dynamical Systems, veja [12].

Finalmente, no Caṕıtulo 6, inspirados pelos caṕıtulos anteriores sobre

conjuntos minimais não triviais, apresentamos um resultado que caracteriza

os conjuntos limites de sistemas planares descont́ınuos sobre certas hipóteses,

bem como seus conjuntos minimais que, a saber, são todos triviais. Tal resul-

tado na verdade configura uma extensão do Teorema de Poincaré-Bendixson

para sistemas planares descont́ınuos sem movimento de deslize. Por movi-

mento de deslize entendemos que está definido um campo de vetores de Fil-

ippov sobre a superf́ıcie de descontinuidade. Ressaltamos que os exemplos

apresentados nos Caṕıtulos 4 e 5 dizem que tal teorema não pode ser exten-

dido para sistemas descont́ınuos com movimento deslizante sem a suposição

de hipóteses extras, uma vez que definido um campo de Filippov, fenômenos

como minimalidade não trivial e caos podem ocorrer, mesmo em dimensão

2.

Na sequência introduzimos os principais resultados do Caṕıtulo 6. Eles

lidam com os conjuntos limites de pontos e trajetórias de um campo de ve-

tores planar descont́ınuo. Para uma definição precisa dos entes que aparecem

nestes resultados, veja a Seção 1.2 do Caṕıtulo 1 desta tese.

Teorema 6.2 [Poincaré-Bendixson para sistemas não suaves]. Seja

Z = (X, Y ) um campo de vetores planar descont́ınuo. Assuma que Z não pos-

sui movimento deslizante e que possua uma trajetória global ΓZ(t, p) cuja tra-

jetória positiva Γ+
Z(t, p) esteja contida em um conjunto compacto K. Suponha

também que X e Y têm um número finito de pontos de equiĺıbrio em K,

nenhum deles sobre Σ, e um número finito de pontos de tangência com Σ.

Então o conjunto ω-limite ω(ΓZ(t, p)) de ΓZ(t, p) é formado por um dos

seguintes objetos:
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(i) um ponto de equiĺıbrio de X ou de Y ;

(ii) uma órbita periódica de X ou de Y ;

(iii) um gráfico de X ou de Y ;

(iv) uma tangência s-singular de Z.

(v) um pseudo ciclo do tipo I de Z;

(vi) um pseudo gráfico de Z;

Observamos que as três primeiras possibilidade para o conjunto ω-limite

de ΓZ(t, p) são conhecidas pelo teorema clássico de Poincaré-Bendixson. Os

três últimos itens, entretanto, ocorrem devido a existência de região de des-

continuidade. Observamos também que se a hipótese de não haver movi-

mento deslizante for suprimida, então teremos exemplos como o conjunto Λ

apresentado previamente, ou seja, teremos a existência de conjuntos limites

com medida de Lebesgue positiva além de outras propriedades estranhas a

teoria clássica dos conjuntos limites, como o fato de conjuntos limites de

pontos em sistemas descont́ınuos serem desconexos (veja os detalhes através

do Caṕıtulo 6).

Salientamos que, desde que o Teorema de Existência e Unicidade não é

válido para sistemas descont́ınuos, não observamos a unicidade das órbitas

passando por um ponto, de tal forma que temos o seguinte corolário como

consequência do Teorema 6.2.

Corolário 6.1. Sobre as mesmas hipóteses do Teorema 6.2, o conjunto ω-

limite ω(p) de um ponto p em um sistema planar descont́ınuo é um dos

objetos descritos nos itens (i), (ii), (iii), (iv), (v) e (vi) ou a união de alguma

(sub)coleção destes objetos.

Observamos que o mesmo vale para o conjunto α-limite apenas mudando

a orientação do tempo.

Outro corolário imediato do Teorema 6.2 toca ao tema dos conjuntos mini-

mais. De fato, observe que, sob as mesmas hipóteses deste teorema, se existe
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um conjunto não vazio, compacto e invariante que não apresenta nenhum

subconjunto próprio com tais caracteŕısticas, então este conjunto é conjunto

limite de alguma trajetória. Isso significa que os conjuntos minimais, como

no caso clássico, estão contidos nos conjuntos limites.

Corolário 6.2. Sobre as mesmas hipóteses do Teorema 6.2, os conjuntos

minimais de um sistema descont́ınuo são todos triviais e dados por um dos

seguintes objetos

(i) um ponto de equiĺıbrio de X ou de Y ;

(ii) uma órbita periódica de X ou de Y ;

(iii) uma tangência s-singular de Z.

(iv) um pseudo ciclo do tipo I de Z;

Observamos que este Corolário, em certo sentido, é uma extensão do Teo-

rema de Denjoy-Schwartz para sistemas descont́ınuos apresentando apenas

regiões de costura e tangência. Além disso, note que os objetos listados no

Corolário 6.2 são os mesmos do Teorema 6.2, com exceção dos gráficos e

pseudo-gráficos, que não são conjuntos minimais uma vez que possuem sub-

conjuntos próprios não vazios, compactos e invariantes, que são os pontos de

equiĺıbrio.

Em resumo, nota-se que embora os resultados do caṕıtulo 6 apresentem

uma maior variedade dinâmica se comparada ao caso de sistemas suaves, o

fato de não termos movimento deslizante permite fazer generalizações relati-

vamente naturais do caso clássico. Os resultados obtidos no Caṕıtulo 6 foram

submetidos a um periódico especializado e podem ser encontrados em [13].

Na sequência descrevemos os caṕıtulos em detalhes de acordo com aquilo

que foi apreesentado previamente nesta introdução. Em acordo com a ĺıngua

utilizada para redigir os artigos cient́ıficos que fundamentam esta tese, a

saber, a ĺıngua inglesa, os caṕıtulos foram redigidos também em inglês. Ou-

tras partes desta tese, como esta introdução e o t́ıtulo, seguem na ĺıngua

nativa onde desenvolveu-se a maior parte da tese, em acordo com as normas

estabelicidas pela UNESP.
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Chapter 1

Preliminaries

In this chapter we present some concepts and results of smooth and non-

smooth systems which will be important in order to develop the thesis. We

start introducing some classical results and discussing some points about

minimal sets for smooth systems. Then we briefly introduce the main con-

cepts about non-smooth systems following the Filippov’s convention in order

to state the results of Chapters 3 to 6. Finally, we present two methods based

on the Malkin’s bifurcation function that achieve conditions for the existence

of minimal sets which will be important in Chapters 2 and 3.

1.1 Minimal sets

Consider E ⊂ Rn an open set, x0 an arbitrary point of E and f ∈ C1(E) a

vector field. Let φt(x0) = φ(t, x0) be the flow of the system

ẋ = f(x), (1.1)

with initial value x(0) = x0 and defined in its maximal interval of existence

I(x0). Understanding the behavior of φt depending on t and x0 is the main

aim of the continuous theory of dynamical system (as well as discrete and

ergodic theory deal with diffeomorfisms and ergodic transformations, respec-

tively). One should ask, for instance, about the invariance of the flow φt

when the initial value x0 varies in a compact set. Invariant and compact sets
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play a very important role in the theory of dynamical systems. Indeed, if φt

is invariant on a compact set which possesses a proper compact subset on

which φt is still invariant, we can reduce the dynamics for a more restrict

set and so on. The “smallest” compact set (different from the empty set)

achieving the invariance by the flow is minimal in the sense that it presents

its proper dynamics. This is precisely the idea of minimal sets: they are fun-

damental dynamical systems. In the following we make clear the definition

of a minimal set.

Definition 1.1. Let K ⊂ E be a nonempty set and φt the flow of system

(1.1). We say that K is a minimal set for system (1.1) if K is compact,

invariant for φt and there exists no proper subset of K satisfying these prop-

erties. The minimal set K is trivial if it is an equilibrium point or a periodic

orbit. Otherwise, K is called a non-trivial minimal set.

We must note that when the flow is defined on a compact smooth boun-

daryless bi-dimensional manifold M and the minimal set K coincides with

M , K is also called trivial. An important result concerning such kind of

manifolds and trivial minimal sets is given by Denjoy and Schwartz. Indeed,

they show that a minimal set of a C2 vector field defined on certain bi-

dimensional compact manifolds is always trivial, i.e., it is an equilibrium

point, a periodic orbit or the proper manifold, in this case, the torus (see [23]

and [60]).

Theorem 1.2 (Theorem of Denjoy-Schwartz). A flow φt of system (1.1) of

class C2 defined in a bi-dimensional compact connected boundaryless manifold

M can not have a minimal set K different from an equilibrium point or a

periodic orbit, unless M = K is the torus.

For flows associated to C1 vector fields defined on compact sets of R2, the

occurrence of minimal sets is closed related with the limit sets of them. In

fact, in such scenario, minimal sets are an essential part of the limit sets, as

stated by the Poincaré-Bendixson Theorem. In what follows in such theorem,

we call ω(Γ) the ω-limit of a trajectory Γ.
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Theorem 1.3 (Poincaré-Bendixson’s Theorem, see [54], pag. 245). Consider

system (1.1) with f ∈ C1(E) where E is an open subset of R2 and suppose

that it has a trajectory Γ contained in a compact subset F on which system

(1.1) has only a finite number of equilibrium points. Then it follows that ω(Γ)

is either a equilibrium point, a periodic orbit or a graphic of system (1.1).

Another aspect of minimal sets concerns with the fact that the orbit

φt(x0) of a point x0 of it is always recurrent. In fact, we know from the

classical theory of dynamical systems that a compact set K is minimal if,

and only if, the closure of the orbit of every point in K coincides with K.

It means that the concept of minimal set is somehow related to recurrence.

Indeed, it holds the following proposition (see [25]).

Proposition 1.1. Let Λ be a minimal set of a vector field of class C1 defined

on a compact manifold S ⊆ Rn. Then Λ is non-trivial if, and only if, the

orbit φt(p) of each point p ∈ Λ is non-trivial and recurrent.

Finding minimal sets apart from the trivial ones is a hard task. Never-

theless the existence of such objects is assured by Zorn’s Lemma. The next

proposition states this fact (see Lemma 2.2 of [53]).

Proposition 1.2. Let C ⊂ E be a nonempty compact set which is invariant

by the flow φt of system (1.1). Then there exists a minimal set K ⊂ C.

Although finding new examples of minimal sets is not easy, the Proposi-

tion 1.2 joint with the Denjoy-Schwartz Theorem say that it must exist other

examples of non-trivial minimal sets by considering vector fields of classes C1

or less. Indeed, in [23] Denjoy presents a non-trivial minimal set for a vector

field of class C1 defined on the torus T2 but distinct from it. Recently, in [13]

and [12] the authors present new examples of non-trivial minimal sets for

non-smooth planar vector fields and also states conditions in order to have

only trivial minimal sets in this scenario. These examples can be found in

the Chapters 4, 5 and 6 or in the references [12] and [13].

In what follows we present the main statements about non-smooth sys-

tems due to Filippov. We stress out that we will not distinguish a non-smooth

system from a discontinuous system, once usually, simply due to nomencla-

ture’s aspects, they are took as synonymous in the literature.
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1.2 Basic theory about non-smooth systems

Non-smooth vector fields (NSVFs, for short) have become certainly one of the

common frontiers between Mathematics and Physics or Engineering. Many

authors have contributed to the study of NSVFs (see for instance the pio-

neering work [33] or the didactic works [3, 67], and references therein about

details of these multivalued vector fields). In our approach Filippov’s con-

vention is considered. So, the vector field of the model is non-smooth across

a switching manifold and it is possible for its trajectories to be confined onto

the switching manifold itself. The occurrence of such behavior, known as

sliding motion, has been reported in a wide range of applications. We can

find important examples in electrical circuits having switches, in mechani-

cal devices in which components collide into each other, in problems with

friction, sliding or squealing, among others.

In order to state the main concepts of NSVFs, let V be an arbitrarily

small neighborhood of 0 ∈ Rn. We consider a codimension one manifold

Σ of Rn given by Σ = f−1(0), where f : V → R is a C1 function having

0 ∈ R as a regular value (i.e. ∇f(p) ≠ 0, for any p ∈ f−1(0)). We call

Σ the switching manifold that is the separating boundary of the regions

Σ+ = {q ∈ V | f(q) ≥ 0} and Σ− = {q ∈ V | f(q) ≤ 0}. Note that we can

assume, locally around the origin of Rn, that f(x, y) = y.

Designate by χ the space of Cr-vector fields on V , with r ≥ 1 large enough

for our purposes. Call Ω the space of vector fields Z : V → Rn such that

Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,

Y (x, y), for (x, y) ∈ Σ−,
(1.2)

where X = (X1, X2), Y = (Y1, Y2) ∈ χ. The trajectories of Z are solutions of

q̇ = Z(q) and we accept it to be multivalued at points of Σ. The basic results

of differential equations in this context were stated by Filippov in [33] and

are summarized in what follows. For doing this, consider Lie derivatives

X.f(p) = ⟨∇f(p), X(p)⟩ and X i.f(p) =
〈
∇X i−1.f(p), X(p)

〉
, i ≥ 2
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where ⟨., .⟩ is the usual inner product in Rn. We distinguish the following

regions on the discontinuity set Σ:

(i) Σc ⊆ Σ is the sewing region if (X.f)(Y.f) > 0 on Σc .

(ii) Σe ⊆ Σ is the escaping region if (X.f) > 0 and (Y.f) < 0 on Σe.

(iii) Σs ⊆ Σ is the sliding region if (X.f) < 0 and (Y.f) > 0 on Σs.

The sliding vector field associated to Z ∈ Ω is the vector field Zs tangent

to Σs and defined at q ∈ Σs by Zs(q) = m − q with m being the point of

the segment joining q +X(q) and q + Y (q) such that m− q is tangent to Σs

(see Figure 1.1). It is clear that if q ∈ Σs then q ∈ Σe for −Z and then we

can define the escaping vector field on Σe associated to Z by Ze = −(−Z)s.

Next we use the notation ZΣ for both cases. In our pictures we represent the

dynamics of ZΣ by double arrows.

q

q + Y (q)

q +X(q)

ZΣ(q)

Σs

Figure 1.1: Filippov’s convention.

We say that q ∈ Σ is a Σ-regular point if

(i) (X.f(q))(Y.f(q)) > 0 or

(ii) (X.f(q))(Y.f(q)) < 0 and ZΣ(q) ≠ 0 (i.e., q ∈ Σe ∪ Σs and it is not an

equilibrium point of ZΣ).

The points of Σ which are not Σ-regular are called Σ-singular. We distin-

guish two subsets in the set of Σ-singular points: Σt and Σp. Any point q ∈ Σp

is called a pseudo equilibrium of Z and it is characterized by ZΣ(q) = 0. Any
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point q ∈ Σt is called a tangential singularity (or also tangency point) and

it is characterized by (X.f(q))(Y.f(q)) = 0 (q is a tangent contact point

between the trajectories of X and/or Y with Σ).

For a given W ∈ χ, we say that r is the contact order of the trajectory

ΓW of W with Σ at p if W kf(p) = 0, ∀k = 0, . . . , r− 1 and W rf(p) ≠ 0. For

W = X (respec. Y ) we say that p ∈ Σ is aninvisible tangency if the contact

order r of ΓX (respec. ΓY ) passing through p is even and Xrf(p) < 0 (respec.

Y rf(p) > 0). On the other hand, for W = X (respec. Y ) we say that p ∈ Σ

is a visible tangency if the contact order r of ΓX (respec. ΓY ) passing through

p is odd or if it is even and Xrf(p) > 0 (respec. Y rf(p) < 0).

A tangential singularity p ∈ Σt is singular if p is a invisible tangency for

both X and Y . On the other hand, a tangential singularity p ∈ Σt is regular

if it is not singular. Figures 1.2 and 1.3 illustrate all possible cases for regular

and singular tangencies, respectively.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

p p p

p p p

p p p

Figure 1.2: Cases where regular tangential singularities occur. The horizontal line
represents the switching manifold. The dashed lines represent the curves where
Xf(p) = 0 or Y f(p) = 0.

Remark 1.1. Throughout this thesis we will say that a tangential singu-

larity p has canard structure (or, equivalently, we will say that a canard
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p pp

Figure 1.3: The particular cases where occur singular tangential singularities.
The horizontal line represents the switching manifold.

phenomenon occurs) if p belongs to ∂Σs ∩ ∂Σe. In such case, note that any

neighborhood of p in Σ presents sliding and escaping behavior. Also, any

point in Σ which is a visible tangency for a vector field and an invisible tan-

gency for the other one presents a canard structure. This shape will occur

later on in this thesis (see Chapter 4). We must note that although we call

such points as canards, we are not dealing with the concept of canard coming

from the singular perturbation theory which, at first, has no relation to our

context. The definition and details of canard phenomena in singular pertur-

bation theory can be found in [26].

Let W ∈ χ. We denote its flow by φW (t, p). Thus,

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
φW (t, p) = W (φW (t, p)),

φW (0, p) = p,

where t ∈ I = I(p,W ) ⊂ R, an interval depending on p ∈ V and W .

The next two definitions state the concepts of local and global trajectory

of a NSVF. The first one can be found in [34]. The second one is presented

in [13].

Definition 1.4. The local trajectory (orbit) φZ(t, p) of a NSVF given by

(1.2) is defined as follows:

• For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by φZ(t, p) =

φX(t, p) and φZ(t, p) = φY (t, p) respectively, where t ∈ I.

• For p ∈ Σc such that X.f(p) > 0, Y.f(p) > 0 and taking the origin

of the time at p, the trajectory is defined as φZ(t, p) = φY (t, p) for
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t ∈ I ∩ {t ≤ 0} and φZ(t, p) = φX(t, p) for t ∈ I ∩ {t ≥ 0}. For the

case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing

the time.

• For p ∈ Σe and taking the origin of the time at p, the trajectory is

defined as φZ(t, p) = φZΣ(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) is either

φX(t, p) or φY (t, p) or φZΣ(t, p) for t ∈ I∩{t ≥ 0}. For the case p ∈ Σs

the definition is the same but reversing time.

• For p a regular tangency point and taking the origin of the time at p,

the trajectory is defined as φZ(t, p) = φ1(t, p) for t ∈ I ∩ {t ≤ 0} and

φZ(t, p) = φ2(t, p) for t ∈ I ∩ {t ≥ 0}, where each φ1,φ2 is either φX

or φY or φZΣ.

• For p a singular tangency point we have φZ(t, p) = p for all t ∈ I.

Definition 1.5. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ω passing

through p0 is a union

ΓZ(t, p0) =
⋃

i∈Z

{σi(t, pi); ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi(t, pi) satisfying σi(ti+1, pi) =

σi+1(ti+1, pi+1) = pi+1 and ti → ±∞ as i → ±∞. A global trajectory is a

positive (respectively, negative) global trajectory if i ∈ N (respectively,

−i ∈ N) and t0 = 0.

Once in this thesis we are interested in minimal sets, it is very important

to state the concept of periodic trajectory. Indeed, in [12] the authors in-

troduce the notion of periodic trajectory for NSVFs, as follows in the next

definition. Actually, it is analogous to the definition of periodic trajectory

for smooth systems.

Definition 1.6. Let ΓZ(t, q) a global trajectory of the NSVF (1.2). We say

that ΓZ is periodic if ΓZ is periodic in the variable t, i.e., if there exist T > 0

such that ΓZ(t+ T, q) = ΓZ(t, q), for all t ∈ R.
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More general than a global periodic trajectory is the concept of closed

global trajectory. Indeed, every global periodic trajectory is closed but the

converse may be not true. Nevertheless, two special kind of closed global

orbits, not necessarily periodic, are the pseudo cycles and pseudo graphs.

Such objects play an important role in the context of minimal and limit sets.

Definition 1.7. Consider the non-smooth vector field (1.2). A closed global

trajectory ∆ of Z is a:

(i) pseudo cycle if ∆∩Σ ≠ ∅ and it does not contain neither equilibrium

nor pseudo equilibrium point (See Figure 1.4).

(ii) pseudo graph if ∆ ∩ Σ ≠ ∅ and it is a union of equilibria, pseudo

equilibria and orbit-arcs of Z joining these points (See Figure 1.5).

Γ

Σ

Σ = Γ Γ

Figure 1.4: Possible kinds of pseudo cycles. From left to right: pseudo cycles of
type I, II and III, respectively.

Figure 1.5: Examples of pseudo graphs. The horizontal line represents the switch-
ing manifold.

A very useful tool in order to study NSVFs is the regularization process

introduced in [61] by Sotomayor and Teixeira. This method allows us to

associate a NSVF to a smooth (or continuous) system and consequently it

is possible to apply the major part of the methods from the classical theory

38



of dynamical systems. Consequently, we can deduce certain aspects of the

NSVFs from its regularization. In the next lines we briefly summarize it.

Indeed, a continuous function ϕ : R −→ R is a transition function if

ϕ(t) = −1 for t ≤ −1, ϕ′(t) > 0 for t ∈ (−1, 1) and ϕ(t) = 1 for t ≥ 1. So,

for δ ∈ (0, 1] we say that the one-parameter family of continuous functions

Zδ given by

Zδ(t, q) =
X(t, q) + Y (t, q)

2
+ ϕδ(f(q))

X(t, q)− Y (t, q)

2
,

is a ϕ-regularization of a non-smooth vector field Z = (X, Y ), where q ∈ V

and ϕδ(t) = ϕ( tδ ).

Observe that, for those points of Σ+ whose f(q) > δ, the regularized

vector fields Zδ coincides to X . Analogously, Zδ coincides to Y for each

point of Σ− whose f(q) < −δ. Some properties of the regularized systems

can be found in [61] and [20], as well as in the references therein.

Other aspects of NSVFs can be found through the references contained

in this section and in the Introduction. Moreover, some definitions pertinent

to a special topic of NSVFs, as minimal and limit sets, can be found in the

respective chapters which deal with such objects. More specifically, they can

be found mainly throughout the Chapters 4, 5 and 6.

1.3 Methods inspired by the Malkin’s bifur-

cation function

In this section we present two results that will be fundamental in the Chap-

ters 2 and 3. We present them before the correspondent chapters because

they possess technical and huge statements aside of the main purpose of the

respective chapters. These results provide sufficient conditions for the exis-

tence of limit cycles after a perturbation of a continuum of periodic orbits

filling up some Euclidean manifold.

The first one take into account C2 perturbations. In some texts, it is

called averaging method (in Chapter 2 we will also call in this way), although
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both methods presented in this section are based on the classical result due

to Malkin [51] and Roseau [58] (for additional information see [59]). In this

thesis, we will apply such method in order to study the existence of limit

cycles in a 3-dimensional nonlinear system. Indeed, consider the general

problem of bifurcation of T -periodic solutions from the differential systems

of the form

ẋ = f(t, x) + εg(t, x) + ε2r(t, x, ε), (1.3)

with ε ≠ 0 sufficiently small. Here the functions f, g : R × Ω → Rn and

r : R × Ω × (−ε0, ε0) → Rn are C2, T -periodic in the first variable and Ω is

an open subset of Rn. The main assumption is that the unperturbed system

ẋ = f(t, x), (1.4)

has a sub-manifold of periodic solutions.

Indeed let x(t, z, ε) be the solution of system (1.4) such that x(0, z, ε) =

z. We write the linearization of the unperturbed system along a periodic

solution x(t, z, 0) as

ẏ = Dxf(t, x(t, z, 0))y. (1.5)

Then we have the following result (see [11]).

Theorem 1.8 (Buică/Llibre/Françoise). Assume there exists a k-dimensional

sub-manifold M filled up with T -periodic solutions of system (1.4). Let V

be an open and bounded subset of Rk and let β : Cl(V ) → Rn−k be a C2

function. We assume that

(i) M = {zα = (α, β(α));α ∈ Cl(V )} and that for each zα ∈ M the

solution x(t, zα) of (1.4) is T -periodic;

(ii) for each zα ∈ M there is a fundamental matrix Uzα of system (1.5)

such that the matrix U−1
zα (0)−U−1

zα (T ) has in the upper right corner the

k×(n−k) zero matrix, and in the lower right corner a (n−k)×(n−k)

matrix ∆α with det∆α ≠ 0.
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Define M : Cl(V ) → Rk as

M(α) = ξ

(∫ T

0

U−1
zα (t, zα)g(t, x(t, zα))dt

)
,

where ξ : Rk×Rn−k −→ Rk is the projection of Rn onto its first k coordinates.

Then the following statements hold.

(a) If there exists a ∈ V with M(a) = 0 and det((∂M/∂α)(a)) ≠ 0,

then there exists a T -periodic solution x(t, ε) of system (1.3) such that

x(t, ε) → zα when ε→ 0.

(b) The type of stability of the periodic solution x(t, ε) is given by the eigen-

values of the Jacobian matrix ((∂M/∂α)(a)).

For a shorter proof of Theorem 1.8, item (a), see [9]. Other methods

based on the Malkin’s bifurcation function take into account different classes

of differentiability on the functions f , g and r and the geometry of the so-

lutions of the unperturbed part of system (1.3). Indeed, recently some of

these methods have considered C0 and discontinuous functions. One of them

is present in [43] and take into account discontinuous perturbations by con-

sidering f ≡ 0 and uses the regularization method introduced in Section 2 of

the current chapter. In [10], however, a method based on the Brouwer theory

can be found for C0 perturbations.

Besides of the methods cited previously, in [11] the authors present a

method assuming C0 perturbations and without considering the extra hy-

pothesis f ≡ 0. Although applying this method may be complicated due to

technical hypotheses, it find place in several problems involving non-smooth

systems, once the regularizations of such systems are at least of class C0. In

the Chapter 3, it will be applied in order to find periodic orbits bifurcating

from a cylinder filled up by periodic orbits. Next we present the method.

Theorem 1.9 (Buică/Llibre/Makarenkov). Consider the T -periodic differ-

ential system

ẋ = f(t, x) + εg(t, x, ε), (1.6)
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where f ∈ C2(R × Rn,Rn) and g ∈ C0(R × Rn × [0, 1],Rn) are T -periodic

in the first variable and g is locally uniformly Lipschitz with respect to its

second variable. For z ∈ Rn denote by x(·, z, ε) the solution of (1.6) such

that x(0, z, ε) = z. Assume that the unperturbed system

ẋ = f(t, x) (1.7)

satisfies the following conditions:

i) There exists an open ball U ⊂ Rk with k ≤ n and a function ξ ∈
C1(U,Rn) such that for h ∈ U the n× k matrix Dξ(h) has rank k and

ξ(h) is the initial condition of a T -periodic solution of (1.7).

ii) For each h ∈ U the linear system

ẏ = Dxf(t, x(t, z, 0))y (1.8)

with z = ξ(h) has the Floquet multiplier +1 with the geometric multi-

plicity equal to k.

Let u1(·, h), ..., uk(·, h) be linearly independent T -periodic solutions of the

adjoint linear system

u̇ = −(Dxf(t, x(t, ξ(h), 0)))
∗u, (1.9)

such that u1(0, h), ..., uk(0, h) are C1 with respect to h and define the function

M : U → Rk (called the Malkin’s bifurcation function) by

M(z) =

∫ T

0

⎛

⎜
⎝

⟨u1(s, z) , g(s, x(s, ξ(z), 0), 0)⟩
...

⟨uk(s, z) , g(s, x(s, ξ(z), 0), 0)⟩

⎞

⎟
⎠ ds.

Then the following statements hold.

1) For any sequences (ϕm)m≥1 of C0(R,Rn) and (εm)m≥1 from [0, 1] such

that ϕm(0) → ξ(z0) ∈ ξ(U), εm → 0 as m → ∞ and ϕm is a T -periodic

solution of (1.6) with ε = εm, we have that M(z0) = 0.

42



2) If M(z) ≠ 0 for any z ∈ ∂U and the Brouwer degree d satisfies

d(M,U) ≠ 0, then there exists ε1 > 0 sufficiently small such that for

each ε ∈ (0, ε1] there is at least one T -periodic solution ϕε of system

(1.6) such that ρ(ϕε(0), ξ(U)) → 0 as ε → 0, where ρ(ϕε(0), ξ(U)) =

minζ∈ξ(U) ∥ϕε(0)− ζ∥ and ∥.∥ is a norm in Rn.

In addition we assume that there exists z0 ∈ U such that M(z0) = 0, M ′(z) ≠

0 for all z ∈ U\{z0} and the Brouwer degree d of M in U satisfies d(M,U) ≠

0. Moreover, calling w0 = ξ(z0), we assume that:

iii) For δ > 0 sufficiently small there exists Mδ ⊂ [0, T ] Lebesgue measur-

able with mes(Mδ) = õ(δ) such that

∥g(t, w1 + ζ , ε)− g(t, w1, 0)− g(t, w2 + ζ , ε) + g(t, w2, 0)∥

≤ õ(δ) ∥w1 − w2∥ ,

for all t ∈ [0, T ]\Mδ and for all w1, w2 ∈ Bδ(w0), ε ∈ [0, δ] and

ζ ∈ Bδ(0).

iv) There exists δ1 > 0 and LM > 0 such that

∥M(z1)−M(z2)∥ ≥ LM ∥z1 − z2∥ , for all z1, z2 ∈ Bδ1(z0).

Then the following conclusion holds.

3) There exists δ2 > 0 such that for any ε ∈ (0, ε1], ϕε is the only T -

periodic solution of (1.6) with initial condition in Bδ2(w0). Moreover

ϕε(0) → ξ(z0) as ε→ 0.

Remark 1.2. Since condition (iii) is rather technical, instead of use it, in

this thesis we consider a simpler condition for the function g, as follows:

v) For any λ > 0 sufficiently small there exists Mλ ⊂ [0, T ] Lebesgue

measurable with mes(Mλ) = o(λ)/λ and such that for every t ∈ [0, T ] \
Mλ and for all w ∈ Bδ(w0), ε ∈ [0,λ], ||Dwg(t, w, ε)−Dwg(t, w0, 0)|| ≤
o(λ)/λ.
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The condition v) is a sufficient one for iii). This fact follows from the Main

Value Theorem.

Following we study the Vallis differential system using Theorem 1.8 pre-

sent before.
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Chapter 2

Minimal sets of a smooth

3-dimensional system by a

rescaling method

In this chapter we study the existence of minimal sets for the Vallis differ-

ential system. By rescaling the variables, the parameters and the periodic

function of the Vallis differential system we provide sufficient conditions for

the existence of periodic solutions. We also determine their approximated

location and characterize their kind of stability. In addition, we apply the

averaging method based on the Malkin’s bifurcation function without per-

forming any perturbation in the Vallis system, as usual in the literature

related to applications of such method.

2.1 Setting the problem

The Vallis system, introduced by Vallis [68] in 1988, is a periodic non-

autonomous 3-dimensional system that models the atmosphere dynamics in

the tropics over the Pacific Ocean, related to the yearly oscillations of pre-

cipitation, temperature and wind force. Denoting by x the wind force, by y

the difference of near-surface water temperatures of the east and west parts

of the Pacific Ocean, and by z the average near-surface water temperature,
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the Vallis system is

dx

dt
= −ax+ by + ap(t),

dy

dt
= −y + xz,

dz

dt
= −z − xy + 1,

(2.1)

where p(t) is some C1 T -periodic function that describes the wind force under

seasonal motions of air masses, and the parameters a and b are positive.

Although this model neglects some effects like Earth’s rotation, pressure

field and wave phenomena, it provides a correct description of the observed

processes and recovers many of the observed properties of El Niño. The

properties of El Niño phenomenon are studied analytically in [62] and [68].

More precisely, in [68] it is shown that taking p ≡ 0, it is possible to observe

the presence of chaos by considering a = 3 and b = 102. Later on, in [62] it

is proved that there exists a chaotic attractor for system (2.1) after a Hopf

bifurcation. This chaotic motion can be fixed if we observe that system (2.1)

and Lorenz system
dx

dt
= −σx− σy,

dy

dt
= ρx− y − xz,

dz

dt
= −βz + xy,

have the same phase portrait by taking p(t) ≡ 0, a = b = σ, ρ = −1, β = 1

and under the replacements of z by z − 1 and of x by −x.

In [42] the authors examine the localization problem of compact invariant

sets of nonlinear autonomous systems and apply the results to the Vallis

system (2.1). In [40] the localization method for invariant compact sets of

the autonomous dynamical system studied in [42] is generalized to the case

of a non-autonomous system, and the localization problem for system (2.1)

is solved.

In this chapter we provide sufficient conditions in order that system (2.1)
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has periodic orbits, and additionally we characterize the stability of them.

Other similar works can be found in [29], [30] and [31], the first one following

the same lines of the current chapter. The study of existence of periodic

orbits in the non-autonomous Vallis system has been poorly considered in

the literature. Indeed, as far as we know, the only study in this direction

is the Hopf bifurcation analyzed in [62] for a autonomous version of system

(2.1).

We observe that the method used here for studying the periodic orbits

can be applied to any periodic non-autonomous differential system. Indeed,

as commented before, in [29] this method have been applied in order to

prove the existence of periodic solutions in a periodic Duffing-Van der Pol

oscillator. Besides, the same methodology is applied in [49] for study a

FitzHugh-Nagumo system. Concerning this chapter, the results are published

in the journal Discrete and Continuous Dynamical Systems - Series A and

can be found in [28].

2.2 Main results

From now on unless we say the contrary we will call

I =

∫ T

0

p(s)ds.

Observe that, once system (2.1) does not depends on ε, the limit cycles

obtained also does not depends on that parameter. For this reason, we use

the symbol “≈” in order to say that a given point approximates another one.

Thus, the limit cycles described in the next results are small amplitude limit

cycles.

Now we state the main results of the chapter.

Theorem 2.1. For I ≠ 0 and a ≠ b the Vallis system (2.1) has a T -periodic

solution (x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(

aI

T (a− b)
,

aI

T (a− b)
, 1

)
,
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Moreover this periodic orbit is stable if a > b and unstable if a < b.

The stable periodic solution provided by Theorem 2.1 says that the Niño

phenomenon exhibits a periodic behavior if the T -periodic function p(t) and

the parameters a and b of the system satisfy that I ≠ 0 and a > b. Moreover,

Theorem 2.1 states that this periodic solution lives near the point

(x, y, z) =

(
aI

T (a− b)
,

aI

T (a− b)
, 1

)
.

Since the periodic solutions found in Theorems 2.3, 2.4 and 2.5 are also

stable, we can provide a similar interpretation for them as we have done for

the periodic solution of Theorem 1.

Theorem 2.2. For I ≠ 0 the Vallis system (2.1) has a T -periodic solution

(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
−aI

Tb
,−aI

Tb
, 1

)
,

Moreover this periodic orbit is always unstable.

Theorem 2.3. For I ≠ 0 the Vallis system (2.1) has a T -periodic solution

(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
I

T
,
I

T
, 1

)
,

Moreover this periodic orbit is always stable.

Theorem 2.4. For I ≠ 0 the Vallis system (2.1) has a T -periodic solution

(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
I

T
, 0, 1

)
,

Moreover this periodic orbit is always stable.
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In what follows we consider the function

J(t) =

∫ t

0

p(s)ds,

and note that J(T ) = I. So we have the following result.

Theorem 2.5. Consider I = 0 and J(t) ≠ 0 if 0 < t < T . Then the Vallis

system (2.1) has a T -periodic solution (x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
− a

T

∫ T

0

J(s)ds, 0, 1

)
.

Moreover this periodic orbit is always stable.

Now we perform a rescaling of the variables (x, y, z), of the function p(t),

and of the parameters a and b, as follows:

x = εm1X, y = εm2Y, z = εm3Z,

p(t) = εn1P (t), a = εn2A, b = εn3B,
(2.2)

where ε is positive and sufficiently small, and mi and nj are non-negative

integers, for all i, j = 1, 2, 3. The following proposition shows that using the

rescaling (2.2), we can not detect other periodic solutions of system (2.1)

using the averaging theory.

Proposition 2.1. By using the averaging theory described in Theorem 1.8

joint with the rescalings (2.2) no other periodic solutions close to origin,

except the ones presented in Theorems 2.1, 2.2, 2.3, 2.4 and 2.5, can be

found in the Vallis system (2.1).

Following we prove these results.

2.3 Proof of the results

The tool for proving the results is the averaging theory based on the Malkin’s

bifurcation function. This theory applies to periodic non-autonomous differ-

ential systems depending on a small parameter ε. Since the Vallis system
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already is a T -periodic non-autonomous differential system, in order to apply

to it the averaging theory we need to introduce a small parameter in such sys-

tem. This is reached doing convenient rescalings in the variables (x, y, z), in

the parameters (a, b) and in the function p(t), as performed in (2.2). Playing

with these rescalings we shall obtain different result on the periodic solutions

of the Vallis system. More precisely, using the rescaling (2.2), in the new

variables (X, Y, Z) system (2.1) writes

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AP (t),

dY

dt
= −Y + εm1−m2+m3XZ,

dZ

dt
= −Z − εm1+m2−m3XY + ε−m3.

(2.3)

Consequently, in order to have non-negative powers of ε we must impose

the conditions

m3 = 0 and 0 ≤ m2 ≤ m1 ≤ L, (2.4)

where L = min{m2 + n3, n1 + n2}. So system (2.3) becomes

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AP (t),

dY

dt
= −Y + εm1−m2XZ,

dZ

dt
= 1− Z − εm1+m2XY.

(2.5)

Our aim is to find periodic solutions of system (2.5) for some special

values of mi, nj , i, j = 1, 2, 3, and after we go back through the rescaling

(2.2) to guarantee the existence of periodic solutions in system (2.1). In

what follows we consider the case where n2 and n3 are positives and m2 =

m1 < n1 + n2. These conditions lead to the proofs of Theorems 2.1, 2.2

and 2.3. For this reason we present these proofs together in order to avoid

repetitive arguments. Moreover, next we consider

K =

∫ T

0

P (s)ds.
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Proofs of Theorems 2.1, 2.2 and 2.3: We start considering system (2.5) with

n2 and n3 positive and m2 = m1 < n1 + n2. So we have

dX

dt
= −εn2AX + εn3BY + ε−m1+n1+n2AP (t),

dY

dt
= −Y +XZ,

dZ

dt
= 1− Z − ε2m1XY.

(2.6)

Now we apply the averaging method to the differential system (2.6). In this

chapter, different from the notation of Section 1.3 of Chapter 1, we will write

x and z instead of “x” and “z”, respectively, for indicate vectors. Then,

calling x = (X, Y, Z)T we get

f(t,x) =

⎛

⎜⎜⎜⎝

0

−Y +XZ

1− Z

⎞

⎟⎟⎟⎠
. (2.7)

We start considering the system

ẋ = f(t,x). (2.8)

Its solution x(t, z, 0) = (X(t), Y (t), Z(t)) such that x(0, z, 0) = z = (X0, Y0

, Z0) is

X(t) = X0,

Y (t) = (1− e−t(1 + t))X0 + e−tY0 + e−ttX0Z0,

Z(t) = 1− e−t + e−tZ0.

In order that x(t, z, 0) is a periodic solution we must choose Y0 = X0 and

Z0 = 1. This implies that for every point of the straight line X = Y , Z = 1

passes a periodic orbit that lies in the phase space (X, Y, Z, t) ∈ R3×S1. Here

and in what follows S1 is the interval [0, T ] identifying T with 0. Consequently

we have an one-dimensional manifold on which each point is periodic by

considering t ∈ S1 in the phase space (X, Y, Z, t) ∈ R3 × S1.

51



Observe that, using the notation of Section 3 in Chapter 1, we have

n = 3, k = 1, α = X0 and β(X0) = (X0, 1), and consequently M is an

one-dimensional manifold given by M = {(X0, X0, 1) ∈ R3 : X0 ∈ R}. The

fundamental matrix Uz(t) of the linearization of system (2.8), satisfying that

Uz(0) is the identity of R3, is

⎛

⎜⎜⎜
⎝

1 0 0

1− cosh t + sinh t e−t e−ttX0

0 0 e−t

⎞

⎟⎟⎟
⎠

,

and its inverse matrix U−1
z

(t) is

⎛

⎜⎜⎜
⎝

1 0 0

1− et et −ettX0

0 0 et

⎞

⎟⎟⎟
⎠

.

Since the matrix U−1
z

(0) − U−1
z

(T ) has an 1 × 2 zero matrix in the upper

right corner and a 2× 2 lower right corner matrix

∆ =

(
1− eT eTTX0

0 1− eT

)

,

with det(∆) = (1 − eT )2 ≠ 0 because T ≠ 0, we can apply the averaging

theory described in Section 1.3 of Chapter 1.

Let F be the vector field of system (2.6) minus f given in (2.7). Then

the components of the function U−1
z

(t)g(t,x(t, z, 0)) are

g1(X0, t) = −εn2AX0 + εn3BX0 + ε−m1+n1+n2AP (t),

g2(X0, t) = ε2m1ettX3
0 + (1− et)g1(X0, t),

g3(X0, t) = −ε2m1etX2
0 .

In order to apply averaging theory of first order we need to consider only

terms up to order ε. Analyzing the expressions of g1, g2 and g3 we note that
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these terms depend on the values of m1 and nj , for each j = 1, 2, 3. In fact,

we just need to study the integral of g1 because k = 1. Moreover studying

the function g1 we observe that the only possibility to obtain an isolated zero

of the function

f1(X0) =

∫ T

0

g1(X0, t)dt

is assuming that n1+n2−m1 = 1. Otherwise, the only solution of f1(X0) = 0

is X0 = 0 which correspond to the equilibrium point (X0, Y0, Z0) = (0, 0, 1) of

system (2.8). The same occurs if n2 and n3 are greater than 1 simultaneously.

This analysis reduces to the existence of possible periodic solutions to the

following cases:

(p1) n2 = 1 and n3 = 1;

(p2) n2 > 1 and n3 = 1;

(p3) n2 = 1 and n3 > 1.

In the case (p1) we have U−1
z

(t)g1(t,x(t, z, 0)) = −AX0 +BX0 +AP (t), and

then

f1(X0) = (−A+ B)TX0 + AK.

Consequently, if A ≠ B, then f1(X0) = 0 implies

X0 =
AK

T (A− B)
.

So, by using Theorem 1.8 of Chapter 1, we get that system (2.6) has a

periodic solution (X(t, ε), Y (t, ε), Z(t, ε)) such that

(X(0, ε), Y (0, ε), Z(0, ε)) → (X0, Y0, Z0) =

(
AK

T (A−B)
,

AK

T (A− B)
, 1

)

when ε → 0. Then, if we take, for instance, n1 = n2 = n3 = 1 and going

back through the rescaling (2.2) of the variables and parameters, we ob-

tain that the periodic solution of system (2.6) becomes the periodic solution
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(x(t), y(t), z(t)) of system (2.1) satisfying that

(x(t), y(t), z(t)) ≈
(

aI

T (a− b)
,

aI

T (a− b)
, 1

)
.

Indeed, observe that

x0 = εX0 = ε
(aε−1)(Iε−1)

T ε−1(a− b)
=

aI

T (a− b)
.

Moreover, we note that f ′
1(x0) = εf ′

1(X0) = −a + b ≠ 0, so the periodic

orbit corresponding to x0 is stable if a > b, and unstable otherwise. This

completes the proof of Theorem 2.1.

Analogously the function f1 in the cases (p2) and (p3) is

f1(X0) = TBX0 + AK and f1(X0) = −TAX0 + AK,

respectively. In the first case the condition f1(X0) = 0 implies

X0 = −AK

TB
.

Now we observe that we have n2 > 1 and n3 = 1. So, going back through

the rescaling we obtain

x0 = εX0 = ε
(−aε−n2)(Iε−n1)

Tbε−1
= − aI

Tbεn1+n2−2
.

and consequently, choosing n1 = 0 and n2 = 2, we get x0 = −aI/(Tb). Note

also that f ′
1(x0) = Tb > 0, then the periodic orbit corresponding to x0 is

always unstable. Thus Theorem 2.2 is proved.

Finally, in the case (p3), f1(X0) = 0 implies X0 = K/T . So, taking

n1 = 1 and going back through the rescaling, we have x0 = εX0 = εI/(T ε) =

I/T . Additionally, we have that f ′
1(x0) = −Ta < 0. Therefore the periodic

solution that comes from x0 is always stable. This proves Theorem 2.3.

Proof of Theorem 2.4: As in the proofs of Theorems 2.1, 2.2 and 2.3 we start

considering a more general case in the powers of ε in (2.5) taking n2 > 0 and
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m2 < m1 < L. In this case the function f(t,x) of system (1.4) is

f(t,x) =

⎛

⎜⎜⎜
⎝

0

Y

1− Z

⎞

⎟⎟⎟
⎠

. (2.9)

Then the solution x(t, z, 0) of system (1.4) satisfying x(0, z, 0) = z is

(X(t), Y (t), Z(t)) = (X0, e
−tY0, 1− e−t + e−tZ0).

This solution is periodic if Y0 = 0 and Z0 = 1. Then for every point of the

straight line Y = 0, Z = 1 passes a periodic orbit that lies in the phase space

(X, Y, Z, t) ∈ R3 × S1. We observe that using the notation of Section 3 in

Chapter 1 we have n = 3, k = 1, α = X0 and β(α) = (0, 1). Consequently

M is an one-dimensional manifold given by M = {(X0, 0, 1) ∈ R3 : X0 ∈ R}.

The fundamental matrix Uz(t) of the linearization of system (1.4) with f

given by (2.9) satisfying Uz(0) = Id3 and its inverse U−1
z

(t) are given by

Uz(t) =

⎛

⎜⎜⎜⎝

1 0 0

0 e−t 0

0 0 e−t

⎞

⎟⎟⎟⎠
and U−1

z
(t)

⎛

⎜⎜⎜⎝

1 0 0

0 et 0

0 0 et

⎞

⎟⎟⎟⎠
.

Since the matrix U−1
z

(0)−U−1
z

(T ) has an 1× 2 zero matrix in the upper

right corner and a 2× 2 lower right corner matrix

∆ =

(
1− eT 0

0 1− eT

)

,

with det(∆) = (1 − eT )2 ≠ 0, we can apply the averaging theory. Again

using the notations introduced in the proofs of Theorems 2.1, 2.2 and 2.3,

since k = 1 we will look only to the integral of the first coordinate of M =

(f1, f2, f3). In this case we have

g1(X0, Y0, Z0, t) = −εn2AX0 + ε−m1+n1+n2AP (t).
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Comparing this function g1 with the same function obtained in the proof

of Theorems 2.1, 2.2 and 2.3, it is easy to see that this case correspond to

the case (p3) of the mentioned theorems. Then, in order to have periodic

solutions, we need to choose n2 = 1 and n1 + n2 −m1 = 1. So, following the

steps of the proof of case (p3) by choosing n1 = 1 and coming back through

the rescaling (2.2) to system (2.1), Theorem 2.4 is proved.

Proof of Theorem 5: Now we start considering system (2.5) with n3 = 2,

n2 > 0, m1 = n1+n2 and m2 < m1 < m2+n3. With these conditions system

(2.5) becomes

dX

dt
= −εn2AX + εm2−n1−n2+n3BY + AP (t),

dY

dt
= −Y + ε−m2+n1+n2XZ,

dZ

dt
= 1− Z − εm2+n1+n2XY.

(2.10)

Once we are using the averaging method, by considering x = (X, Y, Z)T and

following the notation of Chapter 1 we obtain

f(t,x) =

⎛

⎜⎜⎜
⎝

AP (t)

−Y

1− Z

⎞

⎟⎟⎟
⎠

. (2.11)

Now we note that the solution x(t, z, 0) = (X(t), Y (t), Z(t)) such that x(0, z,

0) = z = (X0, Y0, Z0) of the system

ẋ = f(t,x) (2.12)

is

X(t) = X0 +

∫ t

0

AP (s)ds, Y (t) = e−tY0, Z(t) = 1− e−t + e−tZ0.

Since I = 0 and J(t) ≠ 0 for 0 < t < T , in order that x(t, z, 0) is a

periodic solution we need to fix Y0 = 0 and Z0 = 1. This implies that for
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every point in a neighbourhood of X0 in the straight line Y = 0, Z = 1

passes a periodic orbit that lies in the phase space (X, Y, Z, t) ∈ R3 × S1.

Following the notation of Chapter 1, we have n = 3, k = 1, α = X0 and

β(X0) = (0, 1). Hence M is a one-dimensional manifold M = {(X0, 0, 1) ∈
R3 : X0 ∈ R} and the fundamental matrix Uz(t) of the linearization of system

(2.12) satisfying that Uz(0) is the identity of R3 is

⎛

⎜⎜⎜
⎝

1 0 0

0 e−t 0

0 0 e−t

⎞

⎟⎟⎟
⎠

.

It is easy to see that the matrix U−1
z

(0)−U−1
z

(T ) has a 1× 2 zero matrix in

the upper right corner and a 2× 2 lower right corner matrix

∆ =

(
1− eT 0

0 1− eT

)

,

with det(∆) = (1 − eT )2 ≠ 0. Then the hypotheses of Theorem 1.8 of

the previous chapter are satisfied. Now the components of the function

U−1
z

(t)g(t,x(t, z, 0)) are

g1(X0, t) = −εn2A

(
X0 +

∫ t

0

AP (s)ds

)
+ AP (t),

g2(X0, t) = ε−m2+n1+n2

(
X0 +

∫ t

0

AP (s)ds

)
et,

g3(X0, t) = 0.

Taking n1 and n2 equal to one and observing that k = 1 and n = 3, we are

interested only in the first component of the function g. Indeed, applying

the averaging theory we must study the zeros of the first component of the

function

M(X0) = (f1(X0), f2(X0), f3(X0)) =

∫ T

0

U−1
z

(t, z)g(t,x(t, z))dt.
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Since such component writes

−A

(
X0 +

∫ t

0

AP (s)ds

)
,

we have

f1(X0) =

∫ T

0

−A

(
X0 +

∫ t

0

AP (s)ds

)
dt

= −ATX0 − A2

∫ T

0

(∫ t

0

P (s)ds

)
ds.

Therefore, from f1(X0) = 0 we obtain

X0 = −A

T

∫ T

0

(∫ t

0

P (s)ds

)
ds ≠ 0.

So, using rescaling (2.2) we get

x0 = ε2X0 = −ε2aε
−1

εT

∫ T

0

J(s)ds = − a

T

∫ T

0

J(s)ds.

Moreover, since f ′
1(x0) = −a/T < 0, because a and ε are positive, the

T -periodic orbit detected by the averaging theory is always stable. This ends

the proof.

In order to prove Proposition 2.1 we will study all possible powers of the

different ε′s in system (2.5). Indeed, we consider the set P = {n2,−m1+m2+

n3,−m1 + n1 + n2, m1 −m2} of the relevant powers of ε in this system (see

(2.4) and (2.5)), and observe that each integer of P must be non-negative.

Therefore, we will study each one of the 16 possible combinations of values of

the elements of P taking into account conditions (2.4). We start considering

n2 > 0. Then we have the following eight cases:

Case 1: n2 > 0, m1 = m2, n3 = 0 and m1 = n1 + n2,

Case 2: n2 > 0, m1 = m2, n3 = 0 and m1 < n1 + n2,

Case 3: n2 > 0, m1 = m2, n3 > 0 and m1 = n1 + n2,
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Case 4: n2 > 0, m1 = m2, n3 > 0 and m1 < n1 + n2,

Case 5: n2 > 0, m1 > m2, n3 > 0 and m1 = n1 + n2,

Case 6: n2 > 0, m1 > m2, n3 > 0 and m1 < n1 + n2,

Case 7: n2 > 0, m1 > m2, m1 < m2 + n3 and m1 = n1 + n2,

Case 8: n2 > 0, m1 > m2, m1 < m2 + n3 and m1 < n1 + n2.

The remainder cases from 9 to 16 are the same than the cases from 1 to

8, respectively, taking n2 = 0 instead of n2 > 0. We stress out that other

rescaling may lead to different cases, so it can exist other periodic orbits close

to the origin, apart from those ones presented in the previous theorems. Also,

by applying hight order averaging, one may obtain more periodic orbits. In

this chapter we do not do this due to the large number of cases by considering

other possibilities for the power of ε.

We observe that the case 4 was studied in Theorems 2.1, 2.2 and 2.3.

Additionally, Theorem 2.4 concerns to case 8, and Theorem 2.5 deals to case

7. Thus we will eliminate these cases in the proof of Proposition 2.1. In the

other cases we will prove that some hypotheses of the averaging method do

not hold.

Proof of Proposition 2.1: First we prove the proposition using system (2.5)

in case 2. Indeed, considering x = (X, Y, Z), in case 2 system (1.4) becomes

ẋ = f(t,x) = (BY,−Y +XZ, 1− Z)T . (2.13)

This last differential equation is uncoupled and its solution Z(t) is Z(t) =

1− e−t+ e−tZ0. It is easy to see that Z0 = 1 is the only value of Z0 for which

Z(t) is periodic. Now substituting the solution Z(t) in the second differential

equation of (2.13) and solving the system of differential equations Ẋ = BY ,

Ẏ = −Y +X we get

X(t) =
1

2C

(
C1e

1
2
(−C−1)t + C2e

1
2
(C−1)t

)
,

Y (t) =
1

2C

(
C3e

1
2
(−C−1)t + C4e

1
2
(C−1)t

)
,
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where C =
√
1 + 4B > 1, C1 = (C − 1)X0 − 2BY0, C2 = (C + 1)X0 + 2BY0,

C3 = −2X0 + (C + 1)Y0 and C4 = 2X0 + (C − 1)Y0.

Without loss of generality we will study the conditions that turn the

solution X(t) into a periodic function. In order to do this, we need to choose

C1 and C2 equal to zero because C > 1. Fixing C1 = 0 we obtain

X0 =
−2BY0

C − 1
.

Replacing this value into C2 we get (1 + 4B + C)Y0 which is positive unless

Y0 = 0. On the other hand the value Y0 = 0 implies X0 = 0, and since

Z0 = 1 we have the equilibrium point (0, 0, 1) of system (2.13). This implies

that system (2.13) has no periodic solutions, and then the averaging method

cannot be applied in this case. Moreover, there is no loss of generality when

we study only the solution X(t) because if one of the functions X(t), Y (t) or

Z(t) of (1.4) is not periodic, system (2.13) cannot have a periodic solution.

We will use this fact to end the proof of Proposition 2.1 in some other cases

below.

In what follows we prove Proposition 2.1 for system (2.5) in case 10.

Indeed observe that system (1.4) now writes

ẋ = (−AX +BY,−Y +XZ, 1− Z)T . (2.14)

As before we take the solution Z(t) = 1− e−t + e−tZ0 of Ż = 1− Z and we

replace this solution with Z0 = 1 in the other differential equations of (2.14).

Therefore the solution X(t) is

X(t) =
1

2D

(
D1e

1
2
(−A−1−D)t + C2e

1
2
(−A−1+D)t

)

where D =
√

(A− 1)2 + 4B > 0, D1 = (A − 1 + D)X0 − 2BY0 and D2 =

(−A + 1 + D)X0 + 2BY0. We note that this expression is very similar to

the expression of the solution X(t) of system (2.5) in case 2 just taking A as

zero. Moreover, it is possible to show that the same arguments used in case

2 are also true in this case, and consequently the averaging method does not
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apply to system (2.5) in case 10.

In case 12 we have

ẋ = (−AX,−Y +XZ, 1− Z)T . (2.15)

So the solutions X(t) and Z(t) for this system are, respectively, X(t) =

e−AtX0 and Z(t) = 1− e−t+ e−tZ0. Then choosing X0 = 0 and Z0 = 1 in or-

der that X(t) and Z(t) be periodic, the solution Y (t) becomes Y (t) = e−tY0,

and consequently we have to take Y0 = 0. However, the point (X0, Y0, Z0) =

(0, 0, 1) is the equilibrium point of system (2.15), and therefore system (2.15)

has no periodic solutions. Thus, in case 12 again we cannot apply the aver-

aging theory.

In case 14 system (1.4) is

ẋ = (−AX +BY,−Y, 1− Z)T , (2.16)

whose solutions Y (t) and Z(t) starting at Y0 and Z0 are, respectively, Y (t) =

e−tY0 and Z(t) = 1 − e−t + e−tZ0. These solutions are periodic if Y0 = 0

and Z0 = 1, and with these values the solution X(t) writes X(t) = e−AtX0.

So, since A ≠ 0, we need to take X0 = 0 for having X(t) periodic. The

conclusion of Proposition 2.1 in this case follows as in case 12.

For proving Proposition 2.1 in case 16 we observe that the solutions X(t),

Y (t) and Z(t) of system (1.4) given by

ẋ = (−AX,−Y, 1 − Z)T , (2.17)

are X(t) = e−AtX0, Y (t) = e−tY0 and Z(t) = 1−e−t+e−tZ0. The values X0,

Y0 and Z0 for which these solutions are periodic are (X0, Y0, Z0) = (0, 0, 1).

So as before we cannot apply the averaging theory.

Now we prove that the averaging method does not work in system (2.5)

in case 5. In fact, in this case the solutions X(t), Y (t) and Z(t) of system
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(1.4) starting at (X0, Y0, Z0) are

(X(t), Y (t), Z(t)) =

(
X0 +

∫ t

0

AP (s)ds, e−tY0, 1− e−t + e−tZ0

)
,

where now we suppose that
∫ T

0 p(s)ds = 0 in order that x(t) be a T -periodic

solution. Taking into account to the expressions of Y (t) and Z(t), it is easy

to see that Y0 = 0 and Z0 = 1 are the only values of Y0 and Z0 for which

Y (t) and Z(t) are periodic. We observe that using the notation of Section

1.3 in Chapter 1, we have k = 1, n = 3 and the fundamental matrix Uz(t) is

⎛

⎜⎜⎜⎝

1 B(1− e−x) 0

0 e−t 0

0 0 e−t

⎞

⎟⎟⎟⎠
.

Its inverse matrix is

U−1
z

(t) =

⎛

⎜⎜⎜
⎝

1 B(1− et) 0

0 et 0

0 0 et

⎞

⎟⎟⎟
⎠

.

So the matrix U−1
z

(0) − U−1
z

(T ) does not have a 1 × 2 zero matrix in the

upper right corner, because

U−1
z

(0)− U−1
z

(T ) =

⎛

⎜⎜⎜⎝

0 B(eT − 1) 0

0 1− eT 0

0 0 1− eT

⎞

⎟⎟⎟⎠
.

Indeed, since B is positive, we cannot apply averaging method in case 5.

Case 6 is similar to case 5. In fact, the solution X(t), Y (t) and Z(t) of

system (1.4) starting at (X0, Y0, Z0) eliminating the non-periodic terms is

(X(t), Y (t), Z(t)) = (X0, 0, 1),
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and following the steps of Section 3 in Chapter 1 we obtain the same matrix

U−1
z

(0)−U−1
z

(T ) of case 5. Hence we cannot apply the averaging method in

this case.

Next we prove Proposition 2.1 in case 3. The solutions X(t), Y (t) and

Z(t) of system (1.4) are

X(t) = X0 +

∫ t

0

AP (s)ds,

Y (t) = X0 − e−tX0 + e−tY0 +

∫ t

0

AP (s)ds− e−t

∫ t

0

AesP (s)ds,

Z(t) = 1− e−t + e−tZ0,

where we suppose that I = 0 in order that X(t) be a T -periodic solution.

Observe that if I ≠ 0, X(t) is not periodic and then we cannot apply the

averaging method. The expression of Z(t) implies that Z0 = 1 is the only

value of Z0 for which Z(t) is periodic. Moreover, we take X0 = Y0 +W such

that the solutions X(t), Y (t) and Z(t) become

X(t) = Y0 +W + A

∫ t

0

P (s)ds,

Y (t) = Y0 +W + A

∫ t

0

P (s)ds− e−t

(
W −A

∫ t

0

esP (s)ds

)
,

Z(t) = 1,

where
∫ t
0 P (s)ds is periodic because I = 0 and we suppose that e−t(W −

A
∫ t

0 e
sP (s)ds) is periodic. Note that if a such W does not exists, then Y (t)

is non-periodic and the averaging theory does not apply. Hence, we assume

that a such W exists and the solution Y (t) is T -periodic.

We note that if P (t) = cos t and W = A/2 the solutions X(t), Y (t) and
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Z(t) are periodic, because with these considerations we have

X(t) = Y0 + (A/2) + A sin t,

Y (t) = (1/2)(A+ 2Y0 − A cos t + A sin t),

Z(t) = 1,

which are periodic functions. However we want to consider the general case

instead of this particular case P (t) = cos t and W = A/2. Hence using

the notation of Section 1.3 in Chapter 1, we have k = 1, n = 3 and the

fundamental matrix Uz(t) is

⎛

⎜⎜⎜⎝

et 1− et etE(A,W, Y0, t)

0 1 0

0 0 e−t

⎞

⎟⎟⎟⎠
,

where E(A,W, Y0, t) =

∫ t

0

e−2s

(
Y0 +W + A

∫ s

0

P (w)dw

)
ds. Its inverse

matrix U−1
z

(t) is

⎛

⎜⎜⎜
⎝

e−t 1− e−t −etE(A,W, Y0, t)

0 1 0

0 0 et

⎞

⎟⎟⎟
⎠

.

Then the matrix U−1
z

(0)− U−1
z

(T ) has a 2× 2 lower right matrix

∆ =

⎛

⎝
0 0

0 1− eT

⎞

⎠ ,

whose determinant is zero. Then we cannot apply the averaging method in

case 3.

We study system (2.5) in case 1. Now system (1.4) is

(Ẋ, Ẏ , Ż) = (BY + AP (t),−Y +XZ, 1− Z)T . (2.18)
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This differential equation is uncoupled and its solution Z(t) is Z(t) = 1−e−t+

e−tZ0. As before if Z0 = 1 then Z(t) is a periodic solution. Now substituting

the solution Z(t) in the second differential equation of (2.18) with Z0 = 1 and

solving the system of differential equations Ẋ = BY +AP (t), Ẏ = −Y +X

we get solutions very similar to the ones obtained in case 2. In fact, denoting

by X2(t) and Y2(t) the solutions of case 2, for case 1 the solutions X(t) can

be written as

X(t) = X2(t) + (1/2C)g2(A,B, t)e
1
2
(−C−1)t,

where g2 is

A

2C
(−1 + C + CeCt)

∫ t

0

e−
1
2
(−1+C)s

(
1 + C + (−1 + C)eCs

)
P (s)ds+

2AB

C
(1− eCt)

∫ t

0

e−
1
2
(−1+C)s

(
−1 + eCs

)
P (s)ds.

We observe that g2 does not depend neither of X0 nor of Y0. For this reason

we cannot eliminate the non-periodic terms of X2(t) through the expression

(1/2C)g2(A,B, t)e
1
2
(−C−1)t, whatever be the function g2(A,B, t) chosen. So

as we see in case 2 we must choose (X0, Y0) = (0, 0) in order that X2(t)

be periodic. Since Z0 = 1, system (2.18) has no sub-manifold of periodic

solutions as needs the averaging theory.

Case 9 is similar to case 1 in the sense that there is no choice of X0, Y0

and Z0 in such way that the solution of the system

ẋ = (−AX +BY + AP (t),−Y +XZ, 1− Z)T . (2.19)

corresponding to system (2.5) in case 9 has a sub-manifold of periodic solu-

tions. As before, Z(t) = 1− e−t+ e−tZ0 is the solution of the last differential

equation of system (2.19), and the value Z0 for which this solution is periodic

is Z0 = 1. Substituting this solution into system (2.19) and solving it, we

obtain a solution similar to the solution of system (2.14) in case 10 denoted

65



here by X10(t). We have

X(t) = X10(t) + g10(A,B, t),

where g10 is

A

2D
(−1 + A

(
1− eDt

)
+D + (1 +D)eDt)

∫ t

0

e
1
2
(1+A−D)s (1 +D+

(−1 +D)eDs + A
(
−1 + eDs

))
P (s)ds+

2AB

D
(1− eDt)

∫ t

0

e
1
2
(1+A−D)s

(
−1 + eDs

)
P (s)ds.

Note that g10 does not depend neither of X0 nor of Y0. The conclusion of this

case follows from the fact that X10 is non-periodic unless (X0, Y0) = (0, 0),

and using the same arguments of the proof of case 1.

Now we consider system (2.5) in case 11

ẋ = (−AX + AP (t),−Y +XZ, 1− Z)T . (2.20)

Considering A ≠ 1, as before we have Z(t) = 1 − e−t + e−tZ0 and choose

Z0 = 1 because Z(t) must be periodic. The solution X(t) is

X(t) = e−AtX0 + A

∫ t

0

eAsP (s)ds.

This means that we must take X0 = 0 to have X(t) periodic. Substituting

X0 = 0 and Z(t) = 1 in Y (t), it becomes

Y (t) = Y0e
−t +

1

A− 1
e−(A+1)th11(A, t),

where now h11 does not depends on Y0 and writes

A(eAt − et)

∫ t

0

eAsP (s)ds+ AeAt

∫ t

0

(
es − eAs

)
P (s)ds.

Since A ≠ 1 and h11 does not depend on Y0 we cannot eliminate the non-
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periodic term Y0e−t of Y (t) unless we take Y0 = 0. Consequently, as in cases

1 and 9 the averaging theory does not work out in case 11.

Moreover, if A = 1, we have the same solutions X(t) and Z(t). So,

considering again X0 = 0 and Z0 = 1 the solution Y (t) becomes Y (t) =

e−tY0 + h(t), where h does not depend on Y0. Hence, considering A = 1

again we cannot eliminate the non-periodic term Y0e−t of Y (t) unless Y0 = 0,

and therefore the averaging cannot be applied.

Cases 13 and 15 can be proved in a similar way. More precisely, systems

(1.4) corresponding to system (2.5) in cases 13 and 15 are

ẋ = (−AX +BY + AP (t),−Y, 1− Z)T , (2.21)

and

ẋ = (−AX + AP (t),−Y, 1− Z)T , (2.22)

respectively. In both cases solutions Y (t) and Z(t) are Y (t) = e−tY0 and

Z(t) = 1 − e−t + e−tZ0. So in order to Y (t) and Z(t) be periodic we take

Y0 = 0 and Z0 = 1. Then the solution X(t) becomes

X(t) = e−AtX0 + A

∫ t

0

esP (s)ds.

Again once g(t) =

∫ t

0

esP (s)ds does not depend on X0 it is not possible to

eliminate the non-periodic term e−AtX0 from X(t) unless we take X0 = 0.

Therefore both systems (2.21) and (2.22) do not have a sub-manifold M
filled with periodic solutions. Hence the averaging theory cannot be applied

in cases 13 and 15.

2.4 Discussions and conclusions

In this chapter we have achieved sufficient conditions for the existence, loca-

tion and stability of 5 periodic orbits for the Vallis differential system (2.1).

These periodic orbits are distinct from the periodic orbit verified by a Hopf

bifurcation in previous works on the Vallis systems. The non-autonomous
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version of the Vallis systems have been considered instead of the autonomous

one. The method of averaging coming from the Malkin’s bifurcation func-

tion, which is applicable usually in perturbed system, is applied for a system

that has neither perturbation term nor equilibrium points.

The methodology used in order to reach the results consist in performing

different rescaling in the variables, parameters and function of system (2.1).

Additionally, each rescaling into the form (2.2) is considered and all cases

are treated. In particular, we have shown that by using such rescaling and

the method presented in Section 1.3 of Chapter 1, there is no periodic orbits

different from those ones presented throughout this chapter.

68



Chapter 3

Bifurcation of limit cycles from

a non-smooth perturbation of a

two-dimensional isochronous

cylinder

Detect the birth of limit cycles in non-smooth vector fields is a very impor-

tant matter into the recent theory of dynamical systems and applied sciences.

The goal of this chapter is to study the bifurcation of limit cycles from a con-

tinuum of periodic orbits filling up a two-dimensional isochronous cylinder of

a vector field in R3. The approach involves the regularization process of non-

smooth vector fields and a method based on the Malkin’s bifurcation function

for C0 perturbations. The results provide sufficient conditions in order to ob-

tain limit cycles emerging from the considered cylinder through smooth and

non-smooth perturbations of it. To the best of our knowledge they also il-

lustrate the implementation by the first time of a new method based on the

Malkin’s bifurcation function. In addition, some points concerning the num-

ber of limit cycles bifurcating from non-smooth perturbations compared with

smooth ones are studied. In summary the results yield a better knowledge

about limit cycles in non-smooth vector fields in R3 and explicit a manner

to obtain them by performing non-smooth perturbations in codimension one
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Euclidean manifolds. The content of this chapter can be found in [17].

3.1 Setting the problem

This chapter concerns with the existence of limit cycles emerging from a

continuum of periodic solutions filling up a two dimensional cylinder via a

non-smooth perturbation. Such kind of problems are closed related to the

weakest version of the famous 16th Hilbert’s problem proposed by Arnol’d

(see [1] and [2]). As commented in the introduction, Arnol’d asked about

the number of limit cycles bifurcating from the perturbation of a center and

up to now many authors have contributed with this subject. However, the

problems of perturbation of a sub-manifold filled up by periodic solutions

which appears in the literature are usually restricted to the plane. In our

opinion the perturbation of other kind of two-dimensional manifolds has been

poorly treated in the literature.

Recently in [48] the authors investigated the problem of perturbation of

a two-dimensional cylinder filled up by periodic solutions in R3 by a smooth

function. In their paper, the authors illustrated the implementation of a

method based on the averaging theory for computing the limit cycles bifur-

cating from a continuum of periodic solutions occupying a cylinder. Other

papers with similar approaches can be found in [46] and [47].

In this chapter the goal is to generalize the study presented in [48] for a

bigger class of cylinders and also take into account non-smooth perturbations.

We stress out that this is not the situation considered in the paper [48]. We

consider the differential system

ẋ = −y + x(x2 + y2 − 1),

ẏ = x+ y(x2 + y2 − 1),

ż = h(x, y)

(3.1)

with h ∈ C2. Observe that the cylinder C = {(x, y, z) ∈ R3 : x2 + y2 = 1}
is an invariant set for system (3.1), once in cylindrical coordinates we get
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ṙ = r(r2 − 1), where r is the radius. The solution passing through the point

(cos θ0, sin θ0, z0) ∈ C at time t = 0 is x(t) = cos(t + θ0), y(t) = sin(t + θ0)

and

z(t) = z0 +

∫ t

0

h(cos(s+ θ0), sin(s+ θ0))ds. (3.2)

Consequently the solutions on the cylinder C are periodic if the last in-

tegral is periodic. In order to verify such property about this integral, we

must impose some conditions on the function h. Otherwise, the cylinder is

invariant but not filled up with periodic orbits. Indeed, we will consider the

functions h which can be written into the form h(x, y) = ρ(x2 + y2)h(x, y),

where h(x, y) =
∑

i+j≥1 aijx
iyj, aij ∈ R. Then we will achieve conditions on

the natural values i and j for which the integral

∫ t

0

h(cos s, sin s)ds = ρ(1) ·
∑

i+j≥1

aij

∫ t

0

cosi s sinj s ds, (3.3)

is periodic, when now we take θ0 = 0 in order to simplify the expressions.

Note that we are evaluating the integral in cylindrical coordinates taking

r = 1 (in order to address the cylinder). The expression into the integral

takes the following form

cosi s sinj s =

[ i+j
2 ]∑

m=0

cm cos((i+ j − 2m)s),

or

cosi s sinj s =

[ i+j
2 ]∑

m=0

dm sin((i+ j − 2m)s),

if i+ j is even or odd, respectively (see [18]). Using the formulae below and a

table of integrals one can see that in both cases the integral are periodic unless

i+ j− 2m = 0 when i+ j is even. Indeed, in such case the cosine of the first

expression provide a constant term which is not periodic after integration.

However, the condition i + j − 2m = 0 when j is even implies that i is also

even. Then in order to live the last integral of equality (3.3) periodic we

must impose that i and j can not be even simultaneously. Moreover, by
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playing with the series expansion of the function h(x, y), it can be put into

the following form

h(x, y) = h1(x
2, y2) + xh2(x

2, y2) + xy h3(x
2, y2) + y h4(x

2, y2).

Hence, since the power of x and y can not be even simultaneously, we are

interested in the class of functions presenting the form h̃(x, y) = xφ(x2, y2)+

xy χ(x2, y2) + y ψ(x2, y2). Therefore, since the periodic orbits live on the

cylinder C, we will take into account that the functions h(x, y) = ρ(x2 +

y2)h̃(x, y) once ρ(r2 cos2 θ + r2 sin2 θ) = ρ(1) for r = 1 in polar coordinates.

In this chapter we perform a non-smooth perturbation in system (3.1). It

means that we consider two special perturbations of system (3.1) depending

on the region of R3, which lead us to a non-smooth system. The results

are obtained by using the Malkin’s bifurcation function (see [11]) after the

performing of a regularization of such non-smooth system. We stress out that

apart from the results presented in this chapter, it has an especial importance

because we exhibit a thoroughly implementation of the method presented in

Section 1.3 of Chapter 1. As far as we know, there is no other examples of

implementation of such method in the literature.

Indeed, we will consider a plane separating the cylinder C into two parts

in order to perturb each one into two different functions. Nevertheless, due

to the arrangement of C which is around the z-axis, we should take the plane

containing this axis, so every periodic orbit on the cylinder is divided by the

plane. Here, in order to simplify the calculations, we will take y = 0 as this

plane. As we commented, observe that each orbit on the cylinder intersects

Σ transversally in two distinct points. It is clear that the switching manifold

in this case is given by Σ = F−1(0) where F (x, y, z) = y. Note that the

intersection of the cylinder C with Σ are the straight lines x = ±1; note also

that Σ separates C in two connected components (see Figure 3.1).

Now we perturb system (3.1). Taking into account the geometry of Σ, we
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Figure 3.1: The intersection between Σ and C.

will consider the polynomials g± = (p±, q±, r±) given by

p±(x, y, z) =
∑

i+j+k≤m

a±ijkx
iyjzk,

q±(x, y, z) =
∑

i+j+k≤n

b±ijkx
iyjzk,

r±(x, y, z) =
∑

i+j+k≤p

c±ijkx
iyjzk,

(3.4)

with i, j, k ∈ N and aijk, bijk, cijk ∈ R, ∀i, j, k ∈ N. Moreover, consider the

function

g(x, y, z) =
1

2
(g+(x, y, z) + g−(x, y, z)) +

sgn(y)

2
(g+(x, y, z)− g−(x, y, z)),

and observe that the expression of the function g take different forms de-

pending on the signal of y, i.e., g(x) = g+(x) if x ∈ Σ+ = {y ≥ 0} and

g(x) = g−(x) if x ∈ Σ− = {y ≤ 0} for each x ∈ R3, x = (x, y, z). Then, by

performing a perturbation in system (3.1) through the non-smooth function

g we obtain the non-smooth differential system

ẋε = f(x) + εg(x). (3.5)
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where f(x) is the vector field of system (3.1) and ε is a small parameter. We

will call X the vector field defined in Σ+ and Y the vector field defined in

Σ−.

Following the Filippov’s convention, we have XF (x, y, z) = Y F (x, y, z) =

y(x2 + y2 − 1) + x when ε = 0 and then XF (±1, 0, z)· Y F (±1, 0, z) = 1

Therefore C ∩ Σ ⊂ Σc. Also, if |ε| ≠ 0 is sufficiently small, the intersection

C ∩ Σ still occurs in sewing points since the transversality of the solutions

passing through sewing points is stable.

A powerful tool for study the perturbation of a continuum of periodic

solutions as system (3.5) is the averaging theory. Despite, in [43] the authors

exhibits a result based on the averaging theory where it is possible to consider

non-smooth vector fields into the standard form, i.e., when f(t, X) ≡ 0.

However, system (3.5) is not in the standard form, then we can not apply

the results obtained in [43]. In fact, once function g in system (3.5) is non-

smooth, as far as we know there is no perturbation method in the literature

that works out in this system. Nevertheless, in those cases where g is C0, we

can apply the result based on the Malkin’s bifurcation function presented in

[11], even if the considered system is not in the standard form. This method

is summarized in Theorem 1.9 in the Section 1.3 of Chapter 1. In fact, in

this chapter we apply such method in order to achieve the results.

Taking into account such points, to achieve our results we choose to work

with a regularization of system (3.5) since its perturbed part is non-smooth

instead of C0. We obtain the results firstly for the regularized system Zδ

of system (3.5) via Theorem 1.9 and then we adapt such results by doing

δ → 0. Indeed, following the notation of Chapter 1, first we identify q =

X = (x, y, z), V = R3 and F (X) = y. If we consider the C0 transition

function

ϕδ(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, if τ ≤ −δ,
τ

δ
, if − δ < τ < δ,

1, if τ ≥ δ,

(3.6)
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then a C0 ϕδ-regularization of system (3.5) writes

ẋε
δ = f ε

δ (x, ε)

=
f+(x, ε) + f−(x, ε)

2
+ ϕδ(y)

f+(x, ε)− f−(x, ε)

2

= f(x) + εgδ(x, ε),

(3.7)

where

gδ(x, ε) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g−(x), y ≤ −δ,

g+(x) + g−(x)

2
+

y

δ

(
g+(x)− g−(x)

2

)
, |y| < δ,

g+(x), y ≥ δ.

(3.8)

We must stress that the vector field of system (3.7) is C0 and it has the

same unperturbed part of system (3.5), i.e., system (3.7) also possesses the

cylinder C filled by periodic solutions when ε is zero and for all δ > 0. In

addition, taking δ → 0 in system (3.7) we obtain the non-smooth system

(3.5). As we said before, in this chapter we will apply Theorem 1.9 and then

δ

1

−δ
−1

1

−1

Figure 3.2: The graph of ϕδ for δ > 0 (left) and for δ → 0 (right).

we take δ → 0 in order to extend the results for system (3.5).

Now we introduce two functions depending on the function h (which

determines the shape of the periodic solutions on the cylinder C) and the

perturbations p±, q± and r± which are very important to the results. Indeed,
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first consider the function

Ah(θ) = cos θ
∂h

∂x
(cos θ, sin θ) + sin θ

∂h

∂y
(cos θ, sin θ). (3.9)

Observe that Ah(θ) is rather technical but it plays an important role

in the implementation of Theorem 1.9 for system (3.7). Note also that it

depends only on function h.

Next, let Mδ : R −→ R be a function defined by

Mδ(z) =

∫ 2π

0

−1

2

[
h(cos θ, sin θ)(− cos θ(q+(ς) + q−(ς))

+ sin θ(p+(ς) + p−(ς))) + (r+(ς) + r−(ς))+

(h(cos θ, sin θ)(cos θ(−q+(ς) + q−(ς)) + sin θ(p+(ς)−

p−(ς))) + (r+(ς)− r−(ς)))ϕδ(sin θ)] ds,

(3.10)

where ς =
(
cos θ, sin θ, z +

∫ s

0 h(cos v, sin v)dv
)
and z is some real value. We

will see in Subsection 3.2 that under suitable assumptions, the simple zeros of

function Mδ provide limit cycles bifurcating from the continuum of periodic

solutions on the cylinder C. Observe that, up this step, the development

of the calculations does not depend on the transition function ϕδ. Actually,

since the relevant variable is this particular case is z and we have ϕδ evaluated

in sin θ, the results will not changing by replacing the transition function. It

means that we can obtain the same bounds for the number os limit cycles

bifurcating from C independently if the expression of ϕδ.

Now we establish the main results of the chapter.

3.2 Main Results

Lemma 3.1. Suppose that Ah(θ) = 0, ∀θ ∈ [0, 2π). Then, for |ε| sufficiently

small and for every z0 such that Mδ(z0) = 0 and M ′
δ(z0) ≠ 0, the smooth

system (3.7) has a limit cycle bifurcating from the continuum of periodic

solutions of the cylinder C with ε = 0. Moreover, there exist at most s =
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max{m,n, p} values of z for which Mδ(z) = 0.

Remark 3.1. We note that the condition Ah(θ) = 0 is not empty. For

instance, it is not difficult to verify that for each ci ∈ R the functions

ĥ(x, y) =
∞∑

i=0

ci

(x2 + y2)
2i+1
2

x2i+1

satisfy such property. Moreover, it holds that the function ρ(x, y) = 1/(x2 +

y2)
2i+1
2 satisfies ρ(r cos θ, r sin θ) = 1 and the power of x in the polynomials

cix2i+1 is always odd, i.e., the cylinders defined by the function ĥ presented

previously is filled by periodic orbits of system (3.1). Actually, this facts says

that the results take into account infinitely many different cylinders.

The next theorem is the main result of this chapter and says that the

limit cycles that we find for the regularized system (3.7) are preserved for

the non-smooth system (3.5) when δ → 0.

Theorem 3.1. Assume that Ah(θ) = 0, ∀θ ∈ [0, 2π). Then, for |ε| suffi-

ciently small and for each z0 such that Mδ(z0) = 0 and M ′
δ(z0) ≠ 0, the

non-smooth system (3.5) has a limit cycle bifurcating from the continuum of

periodic solutions of the cylinder C with ε = 0. Moreover, there exist at most

s = max{m,n, p} values of z for which Mδ(z) = 0.

A particular case of perturbations of system (3.1) is to consider g+ = g−

in (3.4), i.e., perform the same perturbation in Σ+ and Σ−. In this particular

case we obtain a smooth perturbation of system (3.1). In such case system

(3.5) becomes smooth and it coincides with its regularized system (3.7). The

next theorem states the results in this situation.

Theorem 3.2. Assume that Ah(θ) = 0, ∀θ ∈ [0, 2π), g+ = g− and consider

the function

M δ(z) =

∫ 2π

0

−
[
h(cos θ, sin θ)(− cos θq+(ς) + sin θp+(ς)) + r+(ς)

]
ds,

(3.11)

where ς =
(
cos θ, sin θ, z +

∫ s
0 h(cos v, sin v)dv

)
and z is some real value.

Then, for |ε| sufficiently small and for each z0 such that M δ(z0) = 0 and
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M
′

δ(z0) ≠ 0, the smooth system (3.5) has a limit cycle bifurcating from the

continuum of periodic solutions of the cylinder C with ε = 0. Moreover, there

exist at most s = max{m,n, p} values of z for which M δ(z) = 0.

We observe that although Theorems 3.1 and 3.2 provide the same upper

bound for the number of limit cycles bifurcating from C by performing non-

smooth and smooth functions, respectively, for concrete examples we may

reach different upper bounds in each case. In fact, in similar situations

usually non-smooth systems present more limit cycles than smooth ones. In

Subsection 3.4 we will discuss this topic in more details through a specific

example. Before that, in what follows we present the proof of the results.

3.3 Proofs of the main results

Now we apply the methods and tools described in Chapter 1 in order to prove

the results presented in Subsection 3.2. One should note that the method

used for proving the results deals with perturbations up to first order in

the parameter ε. It means that eventually we may obtain more limit cycles

than those bounds indicated through the results of the previous section by

considering higher order perturbations in ε. We start proving Lemma 3.1.

Proof of Lemma 3.1: Consider system (3.7) and assume that for this system

we verify Ah(θ) = 0 for all θ ∈ [0, 2π). Since the periodic solutions of

system (3.1), that we are perturbing, live on the cylinder C, we will perform

a cylindrical change of coordinates in system (3.7) by introducing the new

variables (z, r, θ) given implicitly by x = r cos θ, y = r sin θ and z = z. In
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the new variables (z, r, θ) system (3.7) writes

ż = h(r cos θ, r sin θ) + ε
1

2
[r+(ϑ) + r−(ϑ) + (r+(ϑ)− r−(ϑ))

ϕδ(r sin θ)] ,

ṙ = −r + r3 + ε
1

2
[cos θ(p+(ϑ) + p−(ϑ)) + sin θ(q+(ϑ) + q−(ϑ))+

cos θ(p+(ϑ)− p−(ϑ)) + sin θ(q+(ϑ)− q−(ϑ))ϕδ(r sin θ)] ,

θ̇ = 1 + ε
1

2r
[cos θ(q+(ϑ) + q−(ϑ))− sin θ(p+(ϑ) + p−(ϑ))+

cos θ(q+(ϑ)− q−(ϑ)) + sin θ(−p+(ϑ) + p−(ϑ))ϕδ(r sin θ)] ,

(3.12)

where ϑ = (r cos θ, r sin θ, z).

Now we change the independent variable t of system (3.12) to the new

variable θ and obtain the following equivalent system

dz

dθ
= h(r cos θ, r sin θ) + ε

1

2r
[h(r cos θ, r sin θ)(− cos θ(q+(ϑ)+

q−(ϑ)) + sin θ(p+(ϑ) + p−(ϑ))) + r(r+(ϑ) + r−(ϑ))+

(h(r cos θ, r sin θ)(cos θ(−q+(ϑ) + q−(ϑ)) + sin θ(p+(ϑ)−

p−(ϑ))) + r(r+(ϑ)− r−(ϑ)))ϕδ(r sin θ)] +O2

= h(r cos θ, r sin θ) + εG1
δ(θ, z, r, ε),

dr

dθ
= −r + r3 + ε

1

2
[−(q+(ϑ) + q−(ϑ))((r2 − 1) cos θ − sin θ)+

(p+(ϑ) + p−(ϑ))((r2 − 1) sin θ + cos θ) + (−(q+(ϑ) + q−(ϑ))

((r2 − 1) cos θ − sin θ) + (p+(ϑ) + p−(ϑ))((r2 − 1) sin θ+

cos θ))ϕδ(r sin θ)] +O2

= −r + r3 + εG2
δ(θ, z, r, ε),

(3.13)

where again ϑ = (r cos θ, r sin θ, z) and O2 = O(ε2). Observe that the vector

field of system (3.13) is 2π-periodic. Additionally, in order to see that its

perturbed part is locally uniformly Lipschitz in the variables (z, r) ∈ R2,
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consider the function Gδ : R × R2 × [0, 1] −→ R2 as Gδ(θ, w1, w2, ε) =

(G1
δ(θ, w1, w2, ε), G2

δ(θ, w1, w2, ε)). Consider also the sets

R1 = {(θ, w1, w2, ε) ∈ R× R2 × [0, 1];w2 sin θ ≤ −δ},

R2 = {(θ, w1, w2, ε) ∈ R× R2 × [0, 1];−δ ≤ w2 sin θ ≤ δ},

R3 = {(θ, w1, w2, ε) ∈ R× R2 × [0, 1];w2 sin θ ≥ δ},

and let K ⊂ R × R2 × [0, 1] =
⋃

i=1,2,3Ri be a compact set. In order to

see that Gδ is Lipschitz on K, it is sufficient to show that Gδ is Lipschitz

on the convex hull KC of K, once K ⊆ KC . Indeed, let x and y be two

arbitrary points of R2 in KC . Now consider S the segment connecting x and

y and Si = S ∩ Ri, i = 1, 2, 3. This intersection consists of a finite number

of closed segments contained in S, since the boundaries between R1 and R2

and between R2 and R3 are codimension one manifolds of R × R2 × [0, 1].

The restrictions Gδ|Si
are polynomial in the variables w1 and w2 for each

i = 1, 2, 3 and consequently they are also C∞. It means that each restriction

Gδ|Si
is locally Li-Lipschitz on the compact set Si, for each i = 1, 2, 3, which

is equivalent to be Li-Lipschitz. Then for all (θ, x, ε), (θ, y, ε) ∈ KC , there

exists L = max{L1, L2, L3} such that

||Gδ(θ, x, ε)−Gδ(θ, y, ε)||

≤ L1

∑

pj∈S1

||pj − pj+1||+ L2

∑

pk∈S2

||pk − pk+1||+ L3

∑

pl∈S3

||pl − pl+1||

≤ L

⎛

⎝
∑

pj∈S1

||pj − pj+1||+
∑

pk∈S2

||pk − pk+1||+
∑

pl∈S3

||pl − pl+1||

⎞

⎠ ,

where ps is the segment with ends in ps and ps+1 for s ∈ {j, k, l}, x = ps and

y = pr, for some s, r ∈ N. Consequently, if n is the number of intersections

of S with the boundaries of each Ri, i = 1, 2, 3, then once S is a segment we

obtain

||Gδ(θ, x, ε)−Gδ(θ, y, ε)|| ≤ L (||x− p1||+ . . .+ ||pn − y||)

≤ L||x− y||.

80



Hence Gδ is locally uniformly Lipschitz in the variables (z, r) ∈ R2.

Now we call X = (z, r) and consider system (3.13) with ε = 0. Then we

obtain
dX

dθ
= f(θ, X), (3.14)

where f(θ, X) = (h(r cos θ, r sin θ),−r+r3). By hypothesis f ∈ C2 and in the

zr-plane, the straight line r = 1 is invariant. Hence the solution X(θ, X0, 0)

with initial condition X0 = (z0, 1) is

X(θ, X0, 0) = (z(θ, z0), r(θ, z0)) =

(
z0 +

∫ θ

0

h(cos s, sin s)ds, 1

)
.

Since
∫ θ

0 h(cos s, sin s)ds is periodic, it follows that z(θ, z0) is 2π-periodic

in the variable θ and for each point in a neighborhood of z = z0 on the

straight line r = 1 passes a 2π-periodic solution that lies in the phase space

(z, r, θ) ∈ R2 × S1. Consequently system (3.14) has a family M = {(z, r) ∈
R2 : r = 1} of 2π-periodic solutions.

Now consider R0 > 0. There exists an open ball U ⊂ R, R0 ∈ R,

U = {z0 ∈ (−R0, R0)} and a function ξ ∈ C1(U,R2),

ξ(z) =

(
z +

∫ θ

0

h(cos s, sin s)ds, 1

)
,

which is a parametrization of each periodic solution on M satisfying that for

any z ∈ U , we have Dξ(z) = (1, 0)T , whose rank is 1. Note that ξ(z) is the

initial condition of a 2π-periodic solution of (3.14).

Now we linearize system (3.14) along its periodic solutions X(θ, ξ(z), 0).

We get
dY

dθ
= DXf(θ, X(θ, ξ(z), 0))Y. (3.15)

The matrix DXf(θ, X(θ, ξ(z), 0)) writes

⎛

⎜⎜
⎝

∂u

∂z
(ξ(z), 1)

∂u

∂r
(ξ(z), 1)

∂(−r + r3)

∂z
(ξ(z), 1)

∂(−r + r3)

∂r
(ξ(z), 1)

⎞

⎟⎟
⎠ ,
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with u(r, θ) = h(x(r, θ), y(r, θ)), x(r, θ) = r cos θ and y(r, θ) = r sin θ.

Now, if we observe that ∂u
∂r (ξ(z), 1) = Ah(θ), then it is easy to check that

system (3.15) writes

dY

dθ
=

(
0 Ah(θ)

0 2

)

Y, (3.16)

and has the fundamental matrix NY (θ) given by

NY (θ) =

⎛

⎝ 1

∫ θ

0

e2sAh(s)ds

0 e2θ

⎞

⎠ . (3.17)

We note that NY (0) = I2. Thus, since Ah(θ) = 0 by hypothesis, the

monodromy matrix C = N−1
Y (0)NY (2π) is

C =

(
1 0

0 e4π

)

, (3.18)

and consequently system (3.15) has the Floquet multiplier +1 with the geo-

metric multiplicity equal to 1.

Next we take the adjoint linear system

dU

dθ
= −(DXf(θ, X(θ, ξ(z), 0)))∗U. (3.19)

Since system (3.19) is the adjoint of system (3.15), its fundamental matrix

NU(θ) is NU(θ) = −(NY (θ))∗ and consequently a linearly independent so-

lution is u1(θ, z) = (−1, 0)T . Observe that u1(0, z) is C1 with respect to z.

Therefore the Malkin’s bifurcation function Mδ(z) takes the form

Mδ(z) =

∫ 2π

0

< u1(s, z), Gδ(s,X(s, ξ(z), 0)) > ds

=

∫ 2π

0

−G1
δ(s,X(s, ξ(z), 0))ds.

(3.20)
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In other words, we obtain the formula

Mδ(z) =

∫ 2π

0

−1

2

[
h(cos θ, sin θ)(− cos θ(q+(ς) + q−(ς))

+ sin θ(p+(ς) + p−(ς))) + (r+(ς) + r−(ς))+

(h(cos θ, sin θ)(cos θ(−q+(ς) + q−(ς)) + sin θ(p+(ς)−

p−(ς))) + (r+(ς)− r−(ς)))ϕδ(sin θ)] ds,

(3.21)

where now ς =
(
cos θ, sin θ, z +

∫ s
0 h(cos v, sin v)dv

)
.

In order to use Theorem 1.9 of Chapter 1 to assure the existence of limit

cycles for system (3.7), we observe that for each z0 ∈ U such that Mδ(z0) = 0

and M ′
δ(z0) ≠ 0, the Implicit Function Theorem says that M ′

δ(z) ≠ 0 for all

z ∈ U , and then we get d(Mδ, U) ≠ 0 since Mδ is continuous. In addition,

we must verify condition iii) of Section 2. However, taking into account

Remark 1.2, we will verify condition v) instead of condition iii). Indeed, let

λ be a positive number, ε ∈ [0,λ], w0 = ξ(z0) and consider the values p+ =

arcsin(δ/r) and p− = arcsin(−δ/r). Observe that function ϕδ is continuous

except in the points θ = p±. In addition, consider the sets L±
λ = {ω ∈

[0, 2π]; |ω − p±| < 2δ} and Lλ = L−
λ ∪ L+

λ . Thus mes(Lλ) = 8λ = o(λ)/λ.

Now we observe that for all θ ∈ [0, 2π] \ Lλ and for all w ∈ Bλ(w0) the

function Gδ is C∞. Indeed, Gδ does not switch from one region Ri to another

Rj when i ≠ j and w varies on Bλ(w0), for i, j = 1, 2, 3. It holds once

θ ∈ [0, 2π] \ Lλ and the radius of the ball Bλ(w0) is smaller than the radius

of each neighborhood (p± − λ, p± + λ) of p±. Then, from the Mean Value

Theorem we obtain

||DwGδ(θ, w, ε)−DwGδ(θ, w0, 0)|| ≤ sup
s∈S

||D2
wGδ(s)|| · |w − w0|,

where S = Bλ(w0) and D2
wGδ denotes the second derivative of the function

DwGδ. Thus, once D2
wGδ is C1 on the compact set V , it holds

||DwGδ(θ, w, ε)−DwGδ(θ, w0, 0)|| ≤ K|w − w0| ≤ Kλ =
Kλ2

λ
,
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and then condition v) holds once Kλ2 = o(λ).

In order to prove condition iv), first observe that Mδ is a real-valued

function whose domain is R. Now, given z0 ∈ U satisfying Mδ(z0) = 0

with M ′
δ(z) ≠ 0 for all z ∈ U , consider δ1 > 0 an arbitrary value such that

V = (z0 − δ1, z0 + δ1) ⊂ U . Thus, by the Mean Value Theorem, there exists

c ∈ V such that

|Mδ(b)−Mδ(a)| = |M ′
δ(c)| · |b− a|,

for all a, b ∈ V and c ∈ (a, b). The proof of condition iv) follows taking

LMδ
= inf{|M ′

δ(z)|; z ∈ V } > 0 and observing that |M ′
δ(c)| ≥ LMδ

, i.e.,

|Mδ(b)−Mδ(a)| ≥ LMδ
|b− a| for all a, b ∈ V .

Therefore Theorem 1.9 assures that there exist ε1 > 0 sufficiently small

and δ2 > 0 such that for each ε ∈ (0, ε1), there exists a unique 2π-periodic

solution (consequently a limit cycle) ϕε
δ ∈ C0(R,R2) of the regularized system

(3.13) with condition in Bδ2(ξ(z0)) satisfying ϕε
δ(0) → ξ(z0) when ε → 0.

Consequently the equivalent systems (3.12) and (3.7) also possess the limit

cycle ϕε
δ(t) satisfying such properties.

Finally, replacing the expressions of p±, q± and r± given in (3.4) into the

expression (3.10), we obtain the polynomial

Mδ(z) = Is(δ)z
s + . . .+ I1(δ)z + I0(δ), (3.22)

where s = max{m,n, p} and

Ij(δ) =

∫ 2π

0

φj(θ, δ)dθ ∈ R,

for some φj depending on θ and δ with j = 0, 1, . . . , s.

Therefore, since Mδ(z) is a polynomial in z possessing at most s zeros,

then s = max{m,n, p} is a upper bound for the number of zeros of Mδ.

But consequently, by using Theorem 1.9, s is also the upper bound for the

number of limit cycles that can bifurcate from the cylinder of system (3.13)

by using the bifurcation Malkin’s function up to first order. Then it follows

that the same holds for the equivalent system (3.7). This finishes the proof
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of Lemma 3.1.

Observe that in the particular case treated in this chapter, the regularized

system (3.7) with ε = 0 does not depend on δ. Thus, neither the initial con-

dition ξ(z) and consequently nor ϕε
δ depends on δ in the last proof. Moreover,

once ξ(z0) = (z0 +
∫ θ

0 h(cos s, sin s)ds, 1) has the second component equal to

one (what means r = 1, in the cylindrical coordinates), the limit cycle ϕε
δ(t)

lives on the cylinder C, i.e., ϕε
δ(t) bifurcates from the continuum of periodic

solutions on C.

In what follows we prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that Ah(θ) = 0 for all θ ∈ [0, 2π) and that for

|ε| sufficiently small we have a value z0 such that Mδ(z0) = 0 and M ′
δ(z0) ≠ 0,

where Mδ is given in (3.10). Then, by Lemma 3.1, there exists a limit cycle

ϕε
δ(t) for system (3.7) satisfying ϕε

δ(0) → ξ(z0) when ε → 0, as described

in the proof of Lemma 3.1. Now consider Σz0 a transversal section of ϕε
δ

contained in the cylinder C for the Poincaré map P ε
δ : Σz0 −→ Σz0 , where

P ε
δ (z) = Xδ(2π, ξ(z), ε), ϕε

δ(0) ∈ Σz0 and Xδ(t, X, ε) is a solution of the

regularized system (3.7). Then it follows that P ε
δ (ϕ

ε
δ(0)) = ϕε

δ(0).

Consider also P ε : Σz0 −→ Σz0 the Poincaré map of the non-smooth

system (3.5) with P ε(z) = X(2π, ξ(z), ε). Observe that by taking ε suffi-

ciently small the Poincaré map P ε is a composition of Poincaré maps of the

regularized system and it is well defined and continuous for every z ∈ Σz0 .

Moreover, each fixed point of P ε corresponds to a periodic solution of the

non-smooth system (3.5). Then it holds that lim
δ→0

P ε
δ (z) = P ε(z), i.e., P ε is

the pointwise limit of P ε
δ .

Therefore the point ϕε(0) = limδ→0 ϕε
δ(0) is a fixed point of the Poincaré

map P ε(z) and consequently the non-smooth system (3.5) has a limit cycle

ϕε(t) such that ϕε(0) → (ξ(z0), 1) when ε→ 0.

Finally we prove Theorem 3.2. It is an immediate consequence of Lemma

3.1.
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Proof of Theorem 3.2: Since g+ = g−, we obtain p+ = p−, q+ = q− and

r+ = r−. Thus, Ah(θ) = 0 for all θ ∈ [0, 2π), from formula (3.10) we get

M δ(z) =

∫ 2π

0

−
[
h(cos θ, sin θ)(− cos θq+(ς) + sin θp+(ς)) + r+(ς)

]
ds,

(3.23)

where ς =
(
cos θ, sin θ, z +

∫ s
0 h(cos v, sin v)dv

)
. In addition, replacing the

expressions of p+, q+ and r+ given in (3.4), we obtain a polynomial

M δ(z) = Is(δ)z
s
0 + . . .+ I1(δ)z0 + I0(δ), (3.24)

where again s = max{m,n, p} and

Ij(δ) =

∫ 2π

0

φj(θ, δ)dθ ∈ R,

for some φj depending on θ and δ with j = 0, 1, . . . , s.

The proof follows straightforward from Lemma 3.1.

We should mention that the formula obtained in (3.23) does not coin-

cides precisely to the one presented in [48] due to a subtle technical mistake

performed in that paper. However, it is important to note that such mis-

understanding does not affects the content of that paper since the goal of

the authors was to present the methodology for computing limit cycles that

bifurcate from a continuum of periodic orbits forming a subset of Rn.

Next we present two concrete examples and some particular perturbations

of it in order to discuss some points about the results. More specifically, we

compare the results of Theorems 3.1 and 3.2.

3.4 Examples and Conclusion

In this section we present some considerations about the number of periodic

solutions that can bifurcate from a special cylinder (more specifically, we fix a

function h) taking into account continuous and discontinuous perturbations.

We must note that obtaining a global result about the achievement of the
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number of periodic solutions from formula (3.10) in terms of h(x, y) and the

values m, n and p is a hard task. Besides, we show that usually it is not

possible neither reach the bound presented in Theorems 3.1 and 3.2 nor make

the respective bounds coincide.

First consider h(x, y) = x/(
√

x2 + y2). Thus system (3.1) is defined in

R3 \{(0, 0, z); z ∈ R} and satisfies the conditions imposed in the beginning of

the chapter. We stress out that this particular case of function h was studied

in [48] by considering continuous perturbations. Observe that the function h

is C2 and its expression in cylindrical coordinates is h(θ) = cos θ. Moreover,

it satisfies
∫ 2π

0 h(θ)dθ = 0 and it is not difficult to see that Ah(θ) = 0 for

all θ ∈ [0, 2π). Now we consider the perturbations in (3.4) with m = 2,

n = p = 0 and a±ijk = 0 for all i, j, k ∈ N satisfying i+ j + k ≤ 1. We choose

this particular perturbation in order to simplify the calculations, once those

ones with large expressions may lead to hard computations. Namely, the

perturbations are

p±(x, y, z) = a±200x
2 + a±020y

2 + a±002z
2 + a±110xy + a±101xz + a±011yz,

q±(x, y, z) = b±000,

r±(x, y, z) = c±000.
(3.25)

By using formula (3.11) we obtain

M δ(z) =
π

4
(a+101 + a+110 + 4b+000 + 8c+000).

Then M δ has no zeros if a
+
101+a+110+4b+000+8c+000 ≠ 0 and a continuum of zeros

otherwise, and consequently Theorem 3.2 does not provide any limit cycle

bifurcating from the cylinder C for these particular cases of perturbations and

function h. On the other hand, now we use formula (3.10), which provides

the periodic solutions bifurcating from C via discontinuous perturbations.

Nevertheless, note that formula (3.10) depends on the function ϕδ(sin θ),

then we need to apply a careful approach. Indeed, we will study this case

in two steps. First, assume that δ ≥ 1 and observe that in this situation we

obtain | sin θ|/δ ≤ 1. Then ϕδ(sin θ) = sin θ/δ and from formula (3.10) we
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get

Mδ(z) =
π

8
(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)

+
π

8δ
(a+101 − a−101)z.

Observe that considering a+101 − a−101 ≠ 0, function Mδ has exactly one

zero z0, namely,

z0 = −(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)δ

a+101 − a−101
,

and z0 satisfies M ′
δ(z0) =

π
8δ (a

+
101 − a−101) ≠ 0.

Now suppose that δ < 1 and consider θδ ∈ (0, π/2) such that sin θδ = δ,

i.e., θδ = arcsin δ. Note that in order to use formula (3.10), we must split

the limit of integration of the integral in smaller pieces, taking into account

the expression of ϕδ(sin θ) as follows.

ϕδ(sin θ) = 1, for δ ≤ sin θ ≤ 1,

ϕδ(sin θ) = sin θ/δ, for −δ < sin θ < δ,

ϕδ(sin θ) = −1, for −1 ≤ sin θ ≤ −δ.

Hence, the expression ofMδ is obtained by performing integral (3.10) with

θ ranging in the partition {0, θδ, π − θδ, π + θδ, 2π − θδ, 2π} of the interval

[0, 2π] (see Figure 3.3).

Therefore, for δ < 1 we obtain the formula

Mδ(z) =
π

8
(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)

−δ
√
1− δ2(−5 + 2δ2)− 3 arcsin(δ)

12δ
(a+101 − a−101)z,

where we assume that a+101 − a−101 ≠ 0. In addition, one should note that

the function Λ(δ) = δ
√
1− δ2(−5 + 2δ2)− 3 arcsin(δ) satisfies Λ(0) = 0 and

Λ′(δ) = −8(1 − δ2)3/2 < 0 for all 0 < δ < 1, i.e., Λ(δ) ≠ 0 when 0 < δ < 1.
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θδ π − θδ

π + θδ 2π − θδ
2π

0

1

δ

−δ
−1

sin θ

θ

Figure 3.3: Different intervals of integration of formula (3.24).

Then function Mδ possesses the zero

z0 =
3π(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)δ

2(δ
√
1− δ2(−5 + 2δ2)− 3 arcsin(δ))(a+101 − a−101)

.

Moreover, it is easy to see that

M ′
δ(z0) = −δ

√
1− δ2(−5 + 2δ2)− 3 arcsin(δ)

12δ
(a+101 − a−101) ≠ 0,

and consequently Lemma 3.1 assures the existence of a limit cycle for system

(3.7) considering the function h(x, y) = x/ (
√
x2 + y2), perturbation (3.25)

and ε sufficiently small. However, by Theorem 3.1, this periodic solution

remains when δ tends to zero, in such sense that system (3.5) has also a

periodic solution. Indeed, when δ → 0 we achieve δ < 1 and then we get

Mδ(z) =
π

8
(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)

+
2

3
(a+101 − a−101)z.

Thus the periodic solution that emerges from the cylinder C for system (3.5)

converges to the periodic solution with initial condition (z0, 1) ∈ C when ε
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is sufficiently small, where

z0 = −3π(a+101 + a+110 + 4b+000 + 8c+000 + a−101 + a−110 + 4b−000 + 8c−000)

16(a+101 − a−101)
.

It is easy to check that when δ = 1 both expressions of Mδ and z0 coin-

cides.

In short, in the case where h(x, y) = x/
√

x2 + y2 and the perturbations

of system (3.1) are given by (3.25), we have one limit cycle by consider-

ing discontinuous perturbations and no one when we consider continuous

ones. Also, it shows that although Theorems 3.1 and 3.2 provide the same

upper bound for the number of limit cycles by using the Malkin’s bifurca-

tion function, the achievement of the number of periodic solutions in each

case may be different. Finally, observe that in both cases, the upper bound

s = 2 = max{2, 0, 0} is not reach.

It is not arduous to exhibit other examples where the number of limit

cycles by considering polynomial non-smooth perturbations is greater than

when we consider smooth ones, but the expressions of Mδ and mainly the

zeros z0 may become huge and we will not present them here. Despite of it,

we exhibit some tables indicating the upper bound for the number of limit

cycles that can bifurcate from smooth and non-smooth perturbations for the

case where m ≥ n, p and a±ijk = 0 for all i, j, k ≤ max{m,n, p} − 1, with

m = 1, 2, 3. This calculations were performed with the help of the algebraic

manipulator Wolfram Mathematica.

Finally, we stress out that the same analysis can be performed by con-

sidering different expressions of the function h(x, y), i.e., changing the ar-

rangement of the periodic solutions on the cylinder C.

Indeed, by considering h(x, y) = xy/(x2 + y2), we achieve all the nec-

essary suppositions about such function. In addition, considering the same

perturbations of the previous discussion we obtain the following tables.

Comparing the tables for both expressions of h(x, y) we can see that the

bifurcation of periodic orbits depends on the shape of the periodic orbits on

C. Nevertheless, again the upper bound for the number of periodic orbits
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Table 1: Case m = 1

n
p

0 1

0 0 1
1 1 1

Table 2: Case m = 2

n
p

0 1 2

0 0 (1)* 1 2
1 1 1 2
2 2 2 2

Table 3: Case m = 3

n
p

0 1 2 3

0 1 (2) 1 (2) 2 3
1 1 (2) 1 (2) 2 3
2 2 2 2 3
3 3 3 3 3

Table 3.1: Upper bound for the number of limit cycles for particular values
of m, n and p when h(x, y) = x/

√
x2 + y2. The number between brackets

indicates the upper bound for the non-smooth case, when it is different from
the continuous one. The * indicates the case studied previously.

when we perform discontinuous perturbations is greater than considering

continuous perturbations.
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Table 4: Case m = 1

n
p

0 1

0 0 1
1 0 (1) 1

Table 5: Case m = 2

n
p

0 1 2

0 1 1 2
1 1 1 2
2 1 (2) 1 (2) 2

Table 6: Case m = 3

n
p

0 1 2 3

0 2 2 2 3
1 2 2 2 3
2 2 2 2 3
3 2 (3) 2 (3) 2 (3) 3

Table 3.2: Upper bound for the number of limit cycles for particular values
of m, n and p when h(x, y) = xy/(x2+y2). The upper bound for the number
of periodic solutions and the dependence of them in terms of m, n and p
change according to function h.
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Chapter 4

Non-trivial minimal sets in

planar non-smooth systems

In this chapter we treat some aspects of non-trivial minimal sets in planar

non-smooth vector fields. Once non-smooth vector fields present no unique-

ness of trajectories in the presence of sliding motion, the concept of invariance

is introduced depending strongly on the orientation of the trajectories. In-

deed, such dependence allows us to state two distinct definitions of minimal

sets for non-smooth vector fields. In order to do this, we distinguish those

sets that are invariant only in a sense of time, or both sense simultaneously.

We also present some examples of such minimal sets in each case. We will see

that in these examples it can be observed the occurrence of non-trivial recur-

rence. Moreover, the minimal sets presented in this chapter have non-empty

interior and they are not predicted neither in classical Poincaré-Bendixson

Theorem nor in the Denjoy-Schwartz Theorem. Additionally, we compare

some properties of minimal sets in both smooth and non-smooth scenario

and stress out some relations between the two definitions of minimal sets.

4.1 Setting the problem

For smooth vector fields there is a very developed theory nowadays, mainly

in the planar case. In such environment, questions about minimality, for
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instance, are entirely answered. Indeed, for planar systems the Poincaré-

Bendixson theorem says that for a given flow the minimal sets are only equi-

libria or limit cycles while in higher dimension the minimal sets are described

by the Denjoy-Schwartz theorem (under some suitable hypothesis − see [35]).

Therefore minimal sets are always limit sets of trajectories running for future

or past, so they are invariant compact connected sets.

A very interesting subject is to study the occurrence of minimal sets in

the non-smooth scenario and ask about what kind of properties they sat-

isfy and how these objects look like. Besides, non-trivial minimality have

been little studied in the literature of the non-smooth systems. Nevertheless,

the specific topic addressed in this chapter concerns with minimal sets in

non-smooth systems. It also deals with what we have called orientable mini-

mality, i.e., minimality depending on the orientation of the time. For smooth

vector fields this is a very important subject because minimal sets are an es-

sential part of limit sets, as we commented before. However, different from

the smooth case, it may not happen in the non-smooth context main due

to the strong dependence of limit sets on the orientation of the trajectories.

This fact has inspired us to introduce the concept of orientable minimality by

distinguishing invariance for positive and negative global trajectories. The

advantage by taking into account such approach is to differ some interest-

ing sets that are not properly minimal but also present compactness and

invariance in some sense. Later in chapter 6 we will discuss about the va-

lidity of the Poincaré-Bendixson theorem for non-smooth systems and state

that an analogous theorem can be achieved by supposing that there is no

sliding motion. This theorem will guarantee that sliding motion is a neces-

sary condition for the existence of non-trivial minimal sets.

4.2 Definitions and first statements

We start introducing the definition of invariance and minimal sets for non-

smooth systems. They are natural generalizations of such concepts which

appear in the smooth theory.
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Definition 4.1. Consider Z ∈ Ω. A set A ⊂ R2 is invariant for Z if, for

each p ∈ A and for all global trajectory ΓZ(t, p) of Z passing through p, it

holds ΓZ(t, p) ⊂ A.

The next example clarify the dependence of the invariance of a set in

terms of the orientation of the trajectories.

Example 4.1. Consider the pseudo cycle Γ, of kind III, presented in Figure

4.1. Note that it is the α-limit set of all global trajectories on a neighbor-

Γ

Σ

Figure 4.1: Pseudo cycle of kind III.

hood of it. However, since the trajectory runs out from Γ trough the escaping

regions of Γ, this set is not invariant according to Definition 4.1. This phe-

nomenon points out a distinct aspect of limit sets which are not predicted for

the classical theory of smooth vector fields, once the α and ω-limit sets are

invariant sets in the last context.

Definition 4.2. Consider Z ∈ Ω. A set M ⊂ R2 is minimal for Z if

(i) M ≠ ∅;

(ii) M is compact;

(iii) M is invariant for Z;

(iv) M does not contain proper subset satisfying (i), (ii) and (iii).

Observe that this definition of minimal sets is very similar to that one pre-

sented in Section 1.2 of Chapter 1 for smooth systems. Indeed, if there is only

trajectory ΓZ(t, p) passing through each point of M , then the definition of
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invariance in both smooth and non-smooth scenario coincides. Consequently,

the definition of minimal sets also coincides in such contexts.

Additionally, one may ask when a minimal set is trivial or not in the

non-smooth case. Although this is a natural question that arises by studying

minimal sets, it is not established until the present moment for non-smooth

systems. Then, inspired in the definition of trivial minimal set of smooth

systems, in what follows we propose a definition for these objects in the

non-smooth context.

Definition 4.3. A minimal set K ⊂ R2 for the non-smooth vector field Z is

called non-trivial if its Lebesgue measure is positive. On the other hand, K

is called a trivial minimal set if its Lebesgue measure is zero.

Example 4.2. One of the most explored objects of the non-smooth theory

of dynamical systems are the pseudo-cycles of type I, which are the same as

periodic orbits. (see Figure 4.2). Indeed, analogously to the smooth case,

Γ

Σ

Figure 4.2: Pseudo cycle of kind I.

these objects are trivial minimal sets, since they have measure zero in R2

and the intersection between them and the switching manifold consist only of

sewing points, i.e., they keep the invariance for both future and past times.

Remark 4.1. We stress out that in our Definition 4.3 we take into account

that the non-smooth vector field Z is defined on an open set V ⊂ R2, i.e.,

K ⊂ V . In those cases where the non-smooth vector field is defined on a

compact bi-dimensional manifold M, this definition may be lightly different by

considering K also a trivial minimal set when K = M , as we commented in

the Section 1.2 of Chapter 1. We also observe that by using this definition the

minimal sets of smooth systems, i.e., periodic orbits and equilibrium points,

are still trivial.
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p+p− p
Σe ΣsΣc Σc

Σ−1 1

Figure 4.3: The non-trivial minimal set Λ.

Finding minimal sets of vector fields is one of the most important tasks

of the qualitative theory of dynamical systems. However, the minimal sets

presented in the literature are always trivial (see, for instance, [15, 16, 34]).

Next we present a non-trivial minimal set in the scenario of non-smooth

systems. As far as we know, this is the first example of a non-trivial minimal

set in a non-smooth vector field.

Example 4.3. Consider Z = (X, Y ) ∈ Ω, where X(x, y) = (1,−2x),

Y (x, y) = (−2, 4x3 − 2x) and Σ = f−1(0) = {(x, y) ∈ R2; y = 0}. The

parametric equation for the integral curves of X and Y with initial con-

ditions (x(0), y(0)) = (0, k+) and (x(0), y(0)) = (0, k−), respectively, are

known. Indeed, its algebraic expressions are given by y = −x2 + k+ and

y = x4/2 − x2/2 + k−, respectively. It is easy to see that p = (0, 0) is an

invisible tangency point of X and a visible one of Y . It is also easy to note

that the points p± = (±
√
2/2, 0) are both invisible tangency points of Y . Note

that between p− and p there exists an escaping region and between p and p+ a

sliding one. Further, every point between (−1, 0) and p− or between p+ and

(1, 0) belongs to a sewing region. Consider now the particular trajectories

of X and Y for the cases when k+ = 1 and k− = 0, respectively. These

particular curves delimit a bounded region of plane that we call Λ, which is a

non-trivial minimal set for Z (see Theorem 4.6 and its proof in Section 4.4).

Figure 4.3 summarizes these facts.
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One may check that the minimal set Λ has nonempty interior, differently

from the smooth context where we have the opposite situation. Consequently

Λ is a non-trivial minimal set. We will also see, later in this chapter, that

the future and the past of each point in Λ coincides with it.

Now consider the pseudo cycle of kind III, that we called Γ, presented

in Figure 4.1. Observe that while Γ is invariant for the past, for the future

each trajectory of Γ escapes from it through its escaping regions. It means

that we must distinguish such objects since there exists a dependence in

the orientation of the time. Indeed, motivated by these facts, following we

present new definitions on invariance and minimality taking into account the

previous considerations.

Definition 4.4. A set A ⊂ R2 is positive-invariant (respectively, nega-

tive-invariant) if for each p ∈ A and all positive global trajectory Γ+
Z(t, p)

(respectively, negative global trajectory Γ−
Z(t, p)) passing through p it holds

Γ+
Z(t, p) ⊂ A (respectively, Γ−

Z(t, p) ⊂ A).

Remark 4.2. It follows directly from Definition 4.4 that a given set is in-

variant if and only if it is positive-invariant and negative-invariant.

In what follows we present the definition of what we have called orientable

minimality. The definition is similar to the one of minimal sets and takes

into account positive and negative invariance.

Definition 4.5. Consider Z ∈ Ω. A set M ⊂ R2 is positive-minimal

(respectively, negative-minimal) if

(i) M ≠ ∅;

(ii) M is compact;

(iii) M is positive-invariant (respectively, negative-invariant) for Z;

(iv) M does not contain proper subset satisfying (i), (ii) and (iii).

The following lemma is a trivial consequence of Definition 4.5.
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Lemma 4.1. Consider M ∈ R2 and Z a non-smooth vector field. If M is

positive-minimal and negative-minimal for Z, then M is minimal for Z.

Proof of Lemma 4.1. In fact, since M is positive-minimal and negative-mini-

mal, then M is a nonempty compact set and from Remark 4.2 M is invariant

and does not contain a proper nonempty compact invariant subset.

Throughout this chapter we will see that the converse of Lemma 4.1 does

not hold. We will also see that the minimal set presented in Example 4.3 is

also positive-minimal and negative-minimal, simultaneously. This fact will be

proved later in this chapter. Nevertheless, in the sequel we present some new

examples of minimal sets and study when they are positive and/or negative

minimal, or only minimal.

Example 4.4. As we have observed before, the pseudo cycle Γ exhibited in

Figure 4.1 is not positive-invariant but is negative-invariant. In fact, it is

also easy to see that Γ is negative-minimal but it is not positive-minimal.

The next example provides a pseudo cycle of kind II which is a negative-

minimal set.

Example 4.5. Consider the pseudo cycle of type II presented in Figure 4.4.

Observe that it is a negative-minimal set once Γ is compact and each point

Γ = Σ

Figure 4.4: Pseudo cycle of kind II.

on it belongs to the escape region, i.e., Γ is negative-invariant. On the other

hand, Γ is not positive-minimal. Indeed, for future times each point on Γ

escape from it, so Γ is not positive-invariant.
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p− p̃
p

q p+Σ

Figure 4.5: The minimal set Λ1. Λ1 is neither positive-minimal nor negative-
minimal.

A consequence of Examples 4.1 and 4.5 is that pseudo cycles of types II

and III are trivial positive-minimal or negative-minimal sets, but never both

simultaneously. On the other hand, pseudo cycles of kind I (see Example 4.2)

are positive-minimal and negative-minimal, simultaneously; consequently, by

Lemma 4.1, pseudo cycles of type I are also minimal sets.

The next two examples provide others non-trivial minimal sets. Besides,

observe that in Example 4.3 we verified the occurrence of canard phenomena

(see Remark 1.1 of Chapter 1). However, in the next example of minimal set,

such characteristic is not required. In addition, the next example exhibits

a minimal set which is neither positive-minimal nor negative-minimal. This

stress out that the converse of Lemma 4.1 does not hold.

Example 4.6. Consider Z1 = (X, Y ) ∈ Ω, where X(x, y) = (1,−2x + 1),

Y (x, y) = (−1, (−2 + x)(−22 + x(−7 + 4x))) and Σ = f−1(0) = {(x, y) ∈
R2; y = 0}. The parametric equation for the integral curves of X and

Y with initial conditions (x(0), y(0)) = (0, k+) and (x(0), y(0)) = (0, k−),

respectively, are known and their algebraic expressions are given by y =

−(−4+x)(3+x)+k+ and y = (−4+x)(−2+x)2(3+x)+k−, respectively. It

is easy to see that p = (1/2, 0) is an invisible tangency point of X, q = (2, 0)

is a visible tangency point of Y and the points p± = ((7±
√
401)/8, 0) are both

invisible tangency points of Y . Note that, in Σ, between p− and p there exists

an escaping region with a repeller pseudo equilibrium p̃ on it and between q

and p+ there exists a sliding region. Further, every point between (−3, 0) and

p−, between p and q or between p+ and (4, 0) belongs to a sewing region. Con-
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sider now the particular trajectories of X and Y for the cases when k+ = 0

and k− = 0, respectively. These particular curves delimit a bounded region of

plane that we call Λ1, which is neither positive-minimal nor negative-minimal

for Z1 (see Theorem 4.7). Figure 4.5 summarizes these facts.

The next example is a small variation of the Example 4.3. It exhibits

a non-trivial minimal set which is not negative-minimal but it is positive-

minimal. It means, in particular, that there is no symmetrical properties

involving positive-minimal sets and negative-minimal sets.

Example 4.7. Consider Z2 a non-smooth vector field presenting the phase

portrait exhibited in Figure 4.6. Here, there exists a compact set Λ2 bounded

by trajectories of X and Y . As illustrated, p1 and p3 are invisible tangency

points of X, p2 is a visible tangency point of X, p1 and p3 are visible tangency

points of Y and p0, p2 and p4 are invisible tangency points of Y (note that p1,

p2 and p3 present canard structure). It is easy to see that Λ2 is invariant for

Z and that there is no proper subset of it which is compact and invariant. So,

Λ2 is minimal for Z2 (see Theorem 4.8). Assume that there exists a pseudo

equilibrium p̃ between p1 and p2. Following the orientation of the trajectories

in Figure 4.6 and the third bullet of Definition 1.4 we conclude that Λ2 is

not negative-minimal since {p̃} is a compact negative-invariant set for Z2.

Moreover, Λ2 is positive-minimal since it is positive-invariant and it has no

proper compact subset which is positive-invariant.

p0

p1

p̃ p2

p3

p4
Σ

Figure 4.6: The minimal set Λ2.

Observe that the previous examples emphasize that non-trivial minimal-

ity can occur even in systems presenting no symmetrical properties or having
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no canard points. Moreover, based on the previous examples, it seems that

the existence of canard points is somehow related to sets which are positive-

minimal and negative-minimal simultaneously. Indeed, in Example (4.3)

we have a canard structure, and the set presented in such example is both

positive-minimal and negative-minimal. The Example 4.6, on the other hand,

presents a perturbation of the set presented in Example 4.3 which destroys

the canard structure. Consequently, in this particular case, such perturbation

create proper sets which are positive-invariant or negative-invariant.

Also, by observing Examples 4.3, 4.6 and 4.7 we note that the presence

of sliding and escaping regions on Σ generates many different objects with

very rich dynamics. The case where does not occur sliding or escape regions

is present in Chapter 6. In such context, we will see that there exist only

trivial minimal sets.

In this section we presented some examples of trivial and non-trivial min-

imal sets in planar non-smooth vector fields. We suspect that some of this

examples are the first ones in the literature. In addition, they clarify the

relation between ordinary minimality and orientable minimality. In the next

section, we enunciate the claims stated previously. Next, in Chapter 5, we

provide a motivation in order to study orientable minimality by making a

connection between such sets and chaotic behavior.

4.3 Main Results

Now we state the main results of this chapter, discussed throughout Section

4.2. The Theorems 4.6, 4.7 and 4.8 correspond to Examples 4.3, 4.6 and 4.7,

respectively.

Theorem 4.6. Consider Z = (X, Y ) ∈ Ω, where X(x, y) = (1,−2x),

Y (x, y) = (−2, 4x3 − 2x) and Σ = f−1(0) = {(x, y) ∈ R2; y = 0}. The

set

Λ = {(x, y) ∈ R
2;−1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}. (4.1)

is a minimal set for Z.
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Theorem 4.7. Consider Z1 = (X, Y ) ∈ Ω, where X(x, y) = (1,−2x + 1),

Y (x, y) = (−1, (−2 + x)(−22 + x(−7 + 4x))) and Σ = f−1(0) = {(x, y) ∈
R2; y = 0}. The set

Λ1 = {(x, y) ∈ R2;−3 ≤ x ≤ 4 and

(−4 + x)(−2 + x)2(3 + x) ≤ y ≤ −(−4 + x)(3 + x)}.
(4.2)

is minimal for Z1 but it is neither positive-minimal nor negative-minimal.

Theorem 4.8. Consider the notations of Example 4.7. The set Λ2 is mini-

mal and also positive-minimal for Z2, but it is not negative-minimal for this

non-smooth vector field.

The next remark is an analogous of Theorem 4.8 by considering the op-

posite orientation of the time.

Remark 4.3. Consider a non-smooth system presenting the phase portrait

exhibited in Figure 4.6 with opposite orientation. Consider also the notation

of Example 4.7. Then, following the same ideas of the last example, we obtain

that Λ2 is minimal and negative-minimal for Z2 but it is not positive-minimal

for this non-smooth system.

Apart from the points indicated previously in this text, the following

result points out another unusual aspect of the non-trivial minimal set Λ,

not predicted for the classical theory.

Theorem 4.9. Let Λ as presented in Theorem 4.7. If q ∈ Λ then there exists

a trajectory passing trough q that is not dense in Λ.

We remember that, according to Definition 4.1, a global trajectory

ΓZ(t, p) could not be unique provided that the uniqueness of solutions does

not hold. This is actually the main reason for what a minimal set may possess

a trajectory that is not dense.

Next we prove the main results.
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4.4 Proof of the main results

In this section we prove the results presented in the last section. Indeed,

the proofs are similar and take into account the richness of dynamics achieve

by the sets Λ, Λ1 and Λ2. Moreover, the proofs strongly use the fact that

these sets present sliding and escaping regions, once such regions preserve

the invariance in one sense of time but produce a dense set of trajectories by

iterating the points on them in the opposite sense.

Proof of Theorem 4.6. It is easy to see that Λ is compact and has nonempty

interior. Moreover, by Definition 1.4, on ∂Λ \ {p} we have uniqueness of

trajectory (here ∂B means the boundary of the set B). Note that the global

trajectory of any point in Λ meets p for some time t∗. Since p is a visible

tangency point for Y and p ∈ ∂Σe ∩ ∂Σs, according to the fourth bullet of

Definition 1.4 any trajectory passing through p remain in Λ. Consequently Λ

is invariant for Z. Moreover, given p1, p2 ∈ Λ the positive global trajectory by

p1 reaches the sliding region between p and p+ and slides to p. The negative

global trajectory by p2 reaches the escaping region between p and p− and

slides to p. So, there exists a global trajectory connecting p1 and p2. Now,

let Λ′ ⊂ Λ be a invariant set. Given q1 ∈ Λ′ and q2 ∈ Λ since there exists

a global trajectory connecting them we conclude that q2 ∈ Λ′. Therefore,

Λ′ = Λ and Λ is a minimal set.

It is not difficult to produce another examples of non-trivial minimal set

based on Λ. For instance, through a particular small perturbation of it we

still have a non-trivial minimal set Λ̃ (see Figure 4.7).

Observe that in the proof of Theorem 4.6 we used the fact the any two

arbitrary points can be connected by a trajectory going to the future or past.

This is not the general case but sometimes such property can be achieve in

only one sense of time. That is the case in the proof of the Theorem 4.7.

Proof of Theorem 4.7. Note that Λ1 is compact and has nonempty interior.

Moreover, the intersection of ∂Λ1 with Σ occurs only in sewing and tangential

points. Consequently, according to the Definition 1.4 the trajectory of any

point starting in Λ1 remain in this set. Consequently Λ1 is invariant.
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Σ

Λ̃

Figure 4.7: Non-trivial minimal set Λ̃ for Z̃ presenting nonempty interior.

Now observe that the future of each point in Λ1 runs to the boundary of

Λ1 in a finite time and do not escape from it. The analogous situation occurs

with p̃ when we consider the time running to the past, which means that Z1 is

neither positive-minimal nor negative-minimal. Nevertheless, let Λ′
1 ⊂ Λ1 be

an invariant set. Then, by the invariance of Λ′
1 and the previous comments

it is clear that ∂Λ1 ⊂ Λ′
1 and p̃ ∈ Λ′

1. Now take a point u ∈ Λ1 ! Λ′
1 and

note that there exists a time tu > 0 for which the positive trajectory through

u, Γ+(t, u) satisfies Γ+(tu, u) = v ∈ ∂Λ1 ⊂ Λ′
1. Then, by the invariance of

Λ′
1, the negative trajectory of v, Γ−(t, v), is contained in Λ′

1. In particular,

the point Γ−(−tu, v) = u belongs to Λ′
1. Therefore, Λ′

1 = Λ1 and then Λ1 is

minimal for Z1.

The proof of of Theorem 4.8 is analogous to the proof of Theorem 4.7.

Proof of Theorem 4.8. As in the proofs of the previous Prepositions, Λ2 is

compact and has nonempty interior. Moreover, following the same idea of the

proof of Preposition 4.7, one can see that Λ2 is also invariant. Now consider

an arbitrary point p ∈ Λ2 and the set

Γ+
p (t, p) =

⋃

γ+
p ∈Ψ

γ+p (t, p),

where Ψ is the set of all positive trajectories γ+p (t, p) satisfying γ
+
p (0, p) = p.

Using definition 1.4 of local trajectories it is not hard to see that Γ+
p (t, p) =

Λ2, once there are infinitively many trajectories reaching escaping regions.

Consequently Γ+
p (t, p) is invariant and Λ2 is positive-minimal for Z2.
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Now let Λ′
2 ⊂ Λ2 be an invariant set. By the last paragraph we get

Λ′
2 ⊂ Γ+

p (t, p). Then, as Λ′
2 is invariant, it holds that Γ+

p (t,Λ
′
2) ⊂ Λ′

2. The

result follows by observing that Γ+
p (t,Λ

′
2) = Λ2, i.e., Λ′

2 = Λ2. In order to

see that Λ2 is not negative-minimal for Z2, only note that ∅ ≠ {p̃} ⊂ Λ2 is

compact and negative-invariant. This ends the proof of Theorem 4.8.

Proof of Theorem 4.9. Observe Figure 4.3. By Definition 1.5, there exists a

global trajectory Γ0 of Z which coincides to the closed curve ∂Λ, the bound-

ary of Λ. Moreover, as shown at the proof of Theorem 4.6, given an arbitrary

point q ∈ Λ, each global orbit passing through q also reaches p = (0, 0) in fi-

nite time. Let Γ1 be an arc of trajectory of Z joining q and p. So, Γ = Γ0∪Γ1

is a non-dense trajectory of Z in Λ passing through q ∈ Λ.

4.5 Discussions and conclusions

In this chapter we highlighted some points about non-trivial minimal sets in

non-smooth vector fields. We presented new definitions concerning minimal

sets by taking into account not just invariance and compactness, but also the

dependence on the orientation of the trajectories. Under the light of such new

definitions, we introduced some examples of minimal sets, positive-minimal

sets and negative-minimal sets. We must stress out that these examples con-

figure the first ones dealing with non-trivial minimal sets in such sense that

they present positive Lebesgue measure. We also discussed some properties

of such sets and we compared them with the ones stated for smooth systems.

Additionally, we call attention for the fact that such phenomena occurs due

to the existence of sliding regions on the switching manifold. It fortifies the

fact that non-smooth system present lots of interesting behaviors, even in

simple contexts as the planar one treated here. We belief that the results

presented in this chapter increase the knowledge about minimal set and limit

sets in the non-smooth scenario. Indeed, the next chapters support some of

these expectations by presenting, based on the current one, new results ad-

dressing chaos and a version of the Poincaré-Bendixson Theorem for planar

non-smooth systems, respectively.
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Chapter 5

Chaotic non-smooth systems

possessing non-trivial minimal

sets

In this chapter we introduce the idea of non-deterministic chaos in non-

smooth systems. We observe the occurrence of such phenomenon in some

systems which possess non-trivial minimal sets. We also investigate some re-

lations between orientable minimality and chaos. Indeed, we verify that sets

which are simultaneously positive-minimal and negative-minimal achieving

non-trivial conditions present chaotic behavior.

We start making some remarks about chaos. Then, we translate some

concepts concerning chaos from the classical theory to the non-smooth one.

Finally we state the results and prove them. They address some examples of

chaotic non-smooth systems on non-trivial minimal sets and highlight some

properties concerning chaotic systems. Nevertheless, the main result give us

a sufficient condition in order to get chaotic systems in terms of non-trivial

minimal sets, once it provide infinitely many examples of such systems.
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5.1 Setting the problem

The recent theory of non-smooth vector fields has shown that such systems

usually present a richer dynamics than smooth ones. As we commented in the

previous chapter, it happens basically due to the non-existence of a theorem

that achieve the uniqueness of a trajectory crossing a switching manifold Σ

through escaping and sliding regions. In fact, the trajectory passing by such

regions on Σ can runs out from Σ to one of the adjacent vector fields or

remains on it. Such behavior lead us to wonder a kind of non-determinism

on Σ. Indeed, in this chapter we make this concept clear by introducing the

notion of topological transitivity and sensitive dependence for non-smooth

systems.

One should note that while chaos in smooth systems are massively studied

in dimension three or higher, the Jordan’s curve Theorem assures that there

is no chaotic behavior in planar smooth systems. However, in this chapter

we will see that this is not the case in non-smooth systems. Indeed, in this

chapter we are concerned with the occurrence of chaos in planar non-smooth

vector fields. More than that, we relate the concept of chaos with positive-

minimal sets and negative-minimal ones by proving that these last objects

provide a sufficient condition to the existence of chaos in non-smooth systems.

Examples of chaos in non-smooth systems have been presented by Jeffrey,

some of them related with the T -singularity (see [22] and [39]). Although

the major part of these examples occur in dimension 3, in [39] it is also

presented an example in dimension 2. However, different from this example in

dimension 2, in this chapter the sets presenting chaos are non-trivial minimal

ones.

Since the dynamic on sliding and escaping regions are set-valued, follow-

ing the previous nomenclature of [22] and [52], it is non-deterministic. In

fact, the definition of non-deterministic chaos for non-smooth vector fields

was first introduced in [22], where the authors adapt the classical definition

of, for example [52], to this context. Of course, the definition must contem-

plate topological transitivity and sensitivity dependence to initial conditions.

For this purpose, consider the following definitions:
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Definition 5.1. System (1.2) is topologically transitive on an invariant set

W if for every pair of nonempty, open sets U and V in W , there exist q ∈ U ,

Γ+
Z(t, q) a positive global trajectory and t0 > 0 such that Γ+

Z(t0, q) ∈ V .

Definition 5.2. System (1.2) exhibits sensitive dependence on a compact

invariant set W if there is a fixed r > 0 satisfying r < diam(W ) such that

for each x ∈ W and ε > 0 there exist a y ∈ Bε(x) ∩W and positive global

trajectories Γ+
x and Γ+

y passing through x and y, respectively, satisfying

dH(Γ
+
x ,Γ

+
y ) = sup

a∈Γ+
x ,b∈Γ+

y

d(a, b) > r,

where diam(W ) is the diameter of W and d is the Euclidean distance.

As observed in [22], the two previous definitions coincide with those ones

used for smooth systems when the flow is single-valued, making this a natural

extension for a set-valued flow. Now we define a non-deterministic chaotic

set:

Definition 5.3. System (1.2) is chaotic on a compact invariant set W if it

is topologically transitive and exhibits sensitive dependence on W .

We observe that this definition do not ask about the density of the pe-

riodic orbits, as occurs in some classical texts of smooth dynamical systems

(see, for instance, Devaney − [24]). However, in the examples presented in

the next section we also achieve such property.

Now we present the results.

5.2 Main results

This section present the results of the chapter. The following one will be

necessary in order to prove Theorem 5.4 in what follows.

Lemma 5.1. For any two points x and y in the set

Λ = {(x1, x2) ∈ R
2;−1 ≤ x1 ≤ 1 and x4

1/2− x2
1/2 ≤ x2 ≤ 1− x2

1},
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there exist a positive global trajectory Γ+(t, x) passing through x and t0 > 0

such that Γ+(t0, x) = y.

The previous lemma says that any two points in Λ can be connected

by some positive global trajectory (note that Λ was introduced before, in

Chapter 4, Figure 4.3). Its proof is straightforward if we observe that a

global trajectory of any two points in Λ meets p for positive and negative

times, as we saw in the last chapter. Such lemma will be fundamental in

the proof of the following result. It presents a chaotic set coming from a

non-trivial minimal set.

Theorem 5.4. Consider Z = (X, Y ) ∈ Ω, where X(x, y) = (1,−2x),

Y (x, y) = (−2, 4x3 − 2x) and Σ = f−1(0) = {(x, y) ∈ R2; y = 0} with

f(x, y) = y. Then the planar non-smooth vector field Z is chaotic on the

compact invariant set

Λ = {(x, y) ∈ R
2;−1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2} (5.1)

shown in Figure 4.3.

As we commented before, apart of topologically transitive and sensitive

dependence, the classical definition of chaos given by Devaney in [24] de-

mands also that periodic trajectories of the considered system are dense

in Λ. Nevertheless, the non-smooth system exhibited in Theorem 5.4 also

present such property, as we see in the next result.

Theorem 5.5. Consider Z and Λ as presented in Theorem 5.4. Then the

periodic trajectories of Z are dense in Λ.

The following result indicates the presence of chaos in another system

studied in the last chapter.

Theorem 5.6. Consider the non-smooth vector field Z2 and the set Λ2 as

presented in Example 4.7 of Chapter 4. Then Z2 is chaotic on Λ2.

Wemust note that the example exhibited in [39] of a chaotic planar system

presents a symmetry. Moreover, such set is not minimal. On the other hand,
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Theorem 5.6 presents an example of a chaotic non-smooth systems which is

minimal (non-trivial) and present no symmetry.

As we stress out before, it can be noted some relations between minimality

and chaos. Indeed, Theorems 5.4 and 5.6 present examples of non-smooth

vector fields which are chaotic on non-trivial minimal sets. This fact suggests

such relation between chaoticity and minimality. We make this fact clear

through the following result. From now on we denote by mes(·) the Lebesgue
measure.

Theorem 5.7. Let Z be a planar non-smooth vector field and Λ ⊂ R2 a

compact invariant set. If Λ is simultaneously positive-minimal and negative-

minimal satisfying mes(Λ) > 0, then Z is chaotic on Λ.

Theorem 5.7 is a very interesting result because presents a connection

between two important objects of non-smooth systems’ theory, namely, the

chaotic planar systems and the non-trivial minimal sets. However, the ex-

ample of a chaotic system introduced in [39] says that the converse does not

hold, since such example is no even minimal. Moreover, one should note that

we can not change the hypotheses of Theorem 5.7 by considering minimal

sets instead of simultaneous positive-minimal sets and negative-minimal sets.

Indeed, consider the non-smooth vector field Z1 and the set Λ1 as presented

in Proposition 4.7 of Chapter 4. As we proved, Λ1 is minimal for Z1. Nev-

ertheless, Z1 is not chaotic on Λ1, since it is not topologically transitive on

Λ1.

In order to see that, consider a nonempty open set U located in Σ+ just

above the sliding segment S between q and p+ in such way that all points of

U reach S from Σ+ to Σ and do not enter in the region Σ− \Σ. Consider also
a nonempty open set V under the same conditions of U , however, located

under S on Σ−. Thus it is clear that all points of U and V reach S in a

finite positive time and slides to ∂Λ1 through the point q. However, since

∂Λ1 is positive-minimal for Z1, it follows that the trajectories of U and V do

not escape from ∂Λ1 for positive values of time. Consequently we can not

connect points of U and V through a positive global trajectory and therefore

Z1 is not topologically transitive on Λ1.
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In order to prove Theorem 5.7 in the sequel, we introduce the next two

lemmas. The first one is a generalization of Lemma 5.1.

Lemma 5.2. Under the same hypotheses of Theorem 5.7, it holds that for

any x, y ∈ Λ, there exists a global trajectory Γ(t, y) passing through y and

t∗ > 0 such that Γ+(t∗, y) = x.

Lemma 5.3. Under the same hypotheses of Theorem 5.7, if any two points

of Λ can be connected by a global trajectory of Z, then Z is chaotic on Λ.

In the next section we prove the main results.

5.3 Proof of the main results

Now we prove the main results of the present chapter. Observe that some of

them have been proved in the last section.

We already know that the set Λ presented in Chapter 4 is a non-trivial

minimal set. Now we prove that it also presents chaotic behavior, according

to the definitions of the first section.

Proof of Theorem 5.4. In order to prove that the non-smooth vector field Z

is topologically transitive on Λ, we observe that Λ is compact and invari-

ant since it is minimal (see Proposition 1 of [13]). Now consider nonempty

open sets U and V in Λ. Since U and V are nonempty, there exist at least

an element λ1 in U and another one λ2 in V . By Lemma 5.1, there exist

a positive global trajectory Γ+(t,λ1) passing through λ1 and t0 > 0 such

that Γ+(t0,λ1) = λ2 ∈ V . Consequently the non-smooth vector field Z is

topologically transitive on the invariant set Λ.

Now we prove that Z exhibits sensitive dependence on Λ. Indeed, take

m = diam(Λ) and consider r = m/2 > 0. Since r < m then there exists two

elements a and b in Λ such that d(a, b) > r. Now consider x ∈ Λ, ε > 0 and fix

y ∈ Bε(x)∩Λ. By Lemma 5.1 there exist positive global trajectories Γ+
Z(t, x)

of x and Γ+
Z(t, y) of y and numbers t1, t2 > 0 such that Γ+

Z(t1, x) = a and

Γ+
Z(t2, y) = b. Then dH(Γ

+
Z(t1, x),Γ

+
Z(t2, y)) = d(a, b) > r and consequently

112



Z exhibits sensitive dependence on Λ. Thus the planar non-smooth vector

field Z is chaotic on the invariant compact set Λ.

Proof of Theorem 5.6. The proof of Theorem 5.6 follows the same lines of

the proof of Theorem 5.4. Indeed, it is enough to note that any two points

of Λ2 can be connected by a positive global trajectory.

The next section present other property of the set Λ, usually related to

chaos.

In this Subsection we prove Theorem 5.5. It assures that, apart from

topological transitivity and sensitive dependence, the set Λ also satisfies a

property concerning the density of its periodic orbits.

Proof of Theorem 5.5. The proof is completed if we show that for every point

x ∈ Λ passes a periodic trajectory of Z. In order to see that, consider σ0 the

closed arc connecting point x with itself (σ0 ≠ {x}). The existence of such

arc is due to Lemma 5.1. Then the global trajectory

ΓZ(t, x) =
⋃

i∈Z

{σi(t, x); ti ≤ t ≤ ti+1}

satisfying σi = σ0 for all i ∈ Z is t1-periodic and passes through x. Observe

that σi(kt1, x) = x, for all k ∈ Z and for all i ∈ Z.

Lemmas 5.2 and 5.3 are fundamental in the proof of Theorem 5.7. Their

proofs are in the sequel.

Proof of Lemma 5.2. Sincemes(Λ) > 0, by Poincaré-Bendixson Theorem for

non-smooth systems presented in [13] (see Theorem 6.2 in the next chapter),

there exists at least a set A ⊂ Σ∩(Σe∪Σs). Otherwise, we have Σ∩Λ = Σc∪Σt

and then by the referred theorem we get mes(Λ) = 0, where Σt is the set of

tangencies points of Z. For each a ∈ A, denote by Π+
a the set of all positive

global trajectories passing through a and by Π−
a its negative analogous. Now

consider the sets

A±
a =

⋃

Γa∈Π
±
a

Γa(t, a) ⊂ Λ.
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Actually we have A±
a = Λ, since A±

a is positive-invariant (respectively ne-

gative-invariant) contained in the positive-minimal (respectively negative-

minimal) set Λ. In order to see that A+
a is positive-invariant, let p be a

point in A+
a and Γp(t, p) a positive global trajectory passing through p. Since

p ∈ A+
a , then there exists a positive global trajectory Γ̃a(t, a) passing through

a and t0 > 0 such that Γ̃a(t0, a) = p. Consequently Γp(t, p) belongs to A+
a

once it is restrained to the positive global trajectory Γ̂a(t, a) = Γ̃a(t, a) ∪
Γp(t, p) ⊂ A+

a . Analogously we can prove that A−
a is negative-invariant.

Now consider x, y ∈ Λ arbitrary points. Since A−
a = Λ = A+

a , there

exists Γ+
a (t, a) ∈ A+

a a positive global trajectory, Γ−
a (t, a) ∈ A−

a a negative

global trajectory and values tx > 0, ty < 0 such that Γ+
a (tx, a) = x and

Γ+
a (ty, a) = y. Consequently there exists a global trajectory Γ(t, y) passing

through y and t∗ = tx + |ty| > 0 such that Γ(t∗, y) = x.

Proof of Lemma 5.3. The proof of Lemma 5.3 is similar to the proof of The-

orem 5.4 by using Lemma 5.2 instead of Lemma 5.1.

Now we prove Theorem 5.7.

Proof of Theorem 5.7. The proof is straightforward from Lemmas 5.2 and

5.3. Indeed, Lemma 5.2 says that, under the hypotheses concerning Λ in

Theorem 5.7, any two points of Λ can be connected. In such case, however,

Lemma 5.3 assures the chaoticity of Λ, then it follows the result.

5.4 Discussions and conclusions

In this chapter we contrast some aspects about non-deterministic chaos in

planar non-smooth vector fields. We introduced the definitions of topologi-

cal transitivity, sensitive dependence and chaos for non-smooth vector fields.

Through these definitions, we verified the existence of non-smooth systems

presenting non-deterministic chaos on some sets. In particular, in the exam-

ples presented throughout this chapter, the considered sets were non-trivial

minimal sets. Moreover, one of these sets presented no symmetry and points
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without canard structure. As far as we know, this is the first time that

non-smooth systems with such characteristic are observed in the planar case.

We also present a result connecting chaos with positive-minimal sets and

negative-minimal ones. This theorem stress out that positive Lebesgue mea-

sure plays an important role in the scenario of chaotic non-smooth systems.

Thus such relation suggest that non-trivial minimal sets (apparently present-

ing canard phenomena) are sufficient conditions to the presence of chaos. In

addition, we present some lemmas which were important to prove the re-

sults but having also a properly interest. For instance, Lemma 5.2 highlights

the fact that, on minimal sets presenting positive measure, we can always

connect two arbitrary points. Nevertheless, through this chapter and the

previous one, we could see that such property find place in both contexts of

minimal sets and chaotic systems.
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Chapter 6

Poincaré-Bendixson Theorem

for non-smooth systems

In this chapter we are concerned with minimal sets and limit sets of non-

smooth systems on the plane. For the classical theory it is well known the

Poincaré-Bendixson Theorem which establishes that the limit set of a smooth

vector field is either an equilibrium point or a periodic orbit or a graph. In the

class of non-smooth systems, that do not present neither sliding nor escaping

regions, a version of Poincaré-Bendixson Theorem is presented. In fact, in

this case we add to the classical limit sets a s-singular tangency, a pseudo

cycle and a pseudo graph. In addition, some examples illustrating the non-

uniqueness of orbits and the non-connectedness of limit sets are presented.

We also present a corollary of the Poincaré-Bendixson Theorem for non-

smooth systems which is a result similar to the Denjoy-Schwartz Theorem.

In this case, we classify the possible minimal sets that may occur and observe

that all of them are trivial.

6.1 Setting the problem

In the previous two chapters we exhibited some examples of minimal sets

having positive Lebesgue measure, which we have called non-trivial minimal

sets. However, in each of these examples we observed the presence of sliding
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and/or escaping regions on the referred set. These facts lead us to some

natural questions: how about the minimal sets of non-smooth vector fields

presenting neither sliding nor escaping regions? Could they be non-trivial?

Are they contained in the limit sets just as occurs in the smooth case? In this

direction, inspired by the smooth classical results, in this chapter we goal to

answer these questions for non-smooth systems presenting only sewing and

tangencies points.

Indeed, for planar smooth vector fields there is a well developed theory

nowadays. This theory is based on some important results. A now exhaus-

tive list of such results include: The Existence and Uniqueness Theorem,

Hartman-Grobman Theorem, Poincaré-Bendixson Theorem and The Peixoto

Theorem, among others. A very interesting subject is to answer if these re-

sults are true or not at the non-smooth vector fields’ scenario. It is already

known that the first theorem is not true (see Example 6.1 and Figure 6.1

below) and the last one is true (under suitable conditions, see [50]). Another

extension to non-smooth theory of classical results on planar smooth vector

fields include the concept of Poincaré Index of a vector field in relation to a

curve, as stated in [14].

The specific topic addressed in this chapter concerns with a version of the

Poincaré-Bendixson Theorem for non-smooth vector fields. This theorem will

provide not only the limit sets but also the minimal sets which may occur in

planar non-smooth system presenting only sewing and tangential points. In

particular, we will achieve the triviality of the minimal sets, different from

some examples presented in Chapter 4 and 5.

In smooth vector fields, under relatively weak hypothesis, Poincaré-Ben-

dixson Theorem provide all possible limit sets for a given orbit when it is

restricted to a compact set. In particular, minimal sets in smooth vector

fields are contained in the limit sets. In this chapter, however, we translate

such theorem for the non-smooth context by considering that the switching

manifold writes Σ = Σc∪Σt. It means that we are assuming no sliding motion

on Σ. We remember that new and unpredictable phenomena may happen by

supposing that there exists sliding and escaping regions on Σ. This is actually
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expected once the presence of escaping and sliding regions on Σ necessarily

destroys the uniqueness of global trajectories passing through such regions.

In particular, this means that we can not generalize the Poincaré-Bendixson

Theorem presented in this chapter without assuming extra hypothesis.

Next we introduce the concepts of α-limit and ω-limit of a global trajec-

tory and a point for non-smooth systems. In order to do this, as made for

defining invariance in Chapter 4, we must to consider each trajectory pass-

ing through a given point. This is necessary due to the non-uniqueness of

trajectories. Observe, however, that for single-valued trajectories the next

definition coincides to the classical one.

Definition 6.1. Given ΓZ(t, p0) a global trajectory, the set ω(ΓZ(t, p0)) =

{q ∈ V ; ∃ (tn) satisfying ΓZ(tn, p0) → q when tn → +∞} (respectively

α(ΓZ(t, p0)) = {q ∈ V ; ∃ (tn) satisfying ΓZ(tn, p0) → q when tn → −∞})
is called ω-limit (respectively α-limit) set of ΓZ(t, p0). The ω-limit (re-

spectively α-limit) set of a point p is the union of the ω-limit (respectively

α-limit) sets of all global trajectories passing through p.

Next we present two examples in order to better understand the role that

orbits and limit cycles play considering sliding motion or only sewing and

tangential points. The first one makes clear the idea of non-uniqueness of

trajectories. Observe that we can verify the existence of disconnected limit

sets.

Example 6.1. Consider Figure 6.1. We observe that the global orbit passing

through q ∈ Σ is not necessarily unique. In fact, according to the third bullet

of Definition 1.4 of Chapter 1, the positive local trajectory by the point q ∈ Σ

can follow three distinct paths, namely, Γ1, Γ2 and Γ3. In particular, this

fact exemplifies that the Existence and Uniqueness Theorem is not true in

the scenario of non-smooth vector fields. Moreover, the ω-limit set of Γi,

i = 1, 2, 3 is, respectively, a focus, a pseudo-equilibrium and a limit cycle.

Consequently, the ω-limit set of q, being the union of these objects, is not a

connected set. However, the α-limit set of q is a connected set composed by

the pseudo-equilibrium p.
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p q

Γ1

Γ2

Γ3

Γ
Σ

Figure 6.1: Disconnected limit sets and non-uniqueness of trajectories. The hori-
zontal line represents the switching manifold.

Observe that non-connected limit sets can occur in smooth systems by

supposing that the trajectories are not contained in a compact set. In the

non-smooth context, however, non-connected limit sets may appear even in

a compact set. Indeed, consider the compact invariant set Λ1 presented in

the previous chapters. It is not difficult to note that the α-limit set of the

point q ∈ ∂Λ1 is the union ∂Λ1 ∪ {p̃}, which is non-connected.

In what follows we present an example where we achieve the condition

Σ = Σc ∪ Σt. Again, we can observe disconnected limit sets.

p

α1

ω1

Γ1

α2
Σ

Figure 6.2: Both the α-limit set {α1,α2} and the ω-limit set {ω1,Γ1} of the point
p are disconnected. Sliding motion on Σ is not allowed.
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Example 6.2. Consider now Figure 6.2. Observe that there is neither sliding

nor escaping regions on the switching manifold. Since the uniqueness of

trajectories by p is not achieved (neither for positive nor for negative times)

both the α and the ω-limit sets are disconnected sets. The α-limit set of p

is composed by the focus α1 and the s-singular tangency α2. The ω-limit set

of p is composed by the saddle ω1 and the periodic orbit Γ1. Consequently

the limit sets for this particular examples are two equilibrium points, a limit

cycle and a s-singular tangency. In particular, all of them are also trivial

minimal sets.

In the latter example we verify that the limit set of the point p can be a

singular tangency. Of course, there is no such objects in the classical theory,

but this fact stress out the importance of introducing new results from the

theory of smooth dynamical systems to the non-smooth one. Take into ac-

count, however, that this case does not allow sliding motion. Nevertheless,

as we will see in the next section, by considering Σ = Σc ∪ Σt we clearly

maintain the limit sets provided by the classical Poincaré-Bendixson Theo-

rem, but we also see the presence of other kind of objects. Beyond singular

tangency, out result says that pseudo-cycles of kind I and pseudo-graphs may

also be a limit set.

6.2 Main results

In the sequel we state the main results of this chapter. They deal with

minimal sets and limit sets.

Theorem 6.2 [Poincaré-Bendixson for non-smooth systems]. Let Z =

(X, Y ) ∈ Ω be a non-smooth vector field. Assume that Z does not have

sliding motion and it has a global trajectory ΓZ(t, p) whose positive trajectory

Γ+
Z(t, p) is contained in a compact subset K ⊂ V . Suppose also that X and

Y have a finite number of critical points in K, no one of them in Σ, and a

finite number of tangency points with Σ. Then, the ω-limit set ω(ΓZ(t, p)) of

ΓZ(t, p) is one of the following objects:

(i) an equilibrium of X or Y ;
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(ii) a periodic orbit of X or Y ;

(iii) a graph of X or Y ;

(iv) a singular tangency of Z;

(v) a pseudo cycle of kind I of Z;

(vi) a pseudo graph of Z.

We observe that the three first possibilities for the ω-limit set of ΓZ(t, p)

in Theorem 6.2 are related with the classical Poincaré-Bendixson Theorem.

Furthermore, the other possibilities appear due to the special type of discon-

tinuous region Σ that we are considering. Note that they are the analogous

of the ordinary equilibrium points, limit cycles and graphs. Moreover, any

sequence (ΓZ(n, p))n ⊂ ΓZ(t, p) ⊂ K has a convergent subsequence with

limit q. Obviously q belongs to K since it is compact and by construction

q ∈ ω(ΓZ(t, p)). Thus we have ω(ΓZ(t, p)) ≠ ∅.

One must see that, as we commented before, by supposing sliding and

escaping regions on Σ, we may get invariant compact sets having positive

Lebesgue measure (see Examples 4.3, 4.6 and 4.7). Such objects are not pre-

dicted by the classical theory and are still misunderstood. Consequently we

can not generalize Theorem 6.2 without assuming extra hypothesis. How-

ever, we stress out that although Theorem 6.2 demands Σ ⊂ Σc ∪ Σt, this

condition may be softened by asking that K does not touch any escaping or

sliding region and that ∂K ∩ Σt = ∅. In summary, Theorem 6.2 still holds

if we do not allow that the compact set K may be reached through some

escaping or sliding regions.

As consequence of Theorem 6.2, since the uniqueness of trajectories pass-

ing through a point is not achieved, we have the following corollary:

Corollary 6.1. Under the same hypothesis of Theorem 6.2 the ω-limit set

ω(p) of a point p ∈ V is one of the objects described in items (i), (ii), (iii),

(iv), (v) and (vi) or a union of some (sub)collection of them.

The same holds for the α-limit set, reversing time.
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Now observe that we can also identify the minimal sets by taking Σ =

Σc ∪ Σt directly from Theorem 6.2. Indeed, under this hypothesis it is easy

to see that, if there exist a non-empty compact invariant set presenting no

proper subset with such characteristics, then this set is a limit set. It means

that, as occurs in smooth systems, minimal sets are necessarily limit sets. Of

course, here we are strongly using the fact that Σ = Σc ∪ Σt. These points

summarized the proof of the next result.

Corollary 6.2. Under the same hypothesis of Theorem 6.2, the minimal sets

of a given non-smooth systems are trivial and given by one of the following

objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iiii) a s-singular tangency of Z;

(iv) a pseudo cycle of Z;

Proof. The proof follows straightforward from the previous comments and

the fact that each object (i), (ii), (iii) and (iv) presented in Lemma 6.2 have

zero Lebesgue measure in R2.

Observe that Lemma 6.2 is a simple generalization of the Denjoy-Schwartz

Theorem for non-smooth vector fields presenting only sewing and tangential

points.

Following we prove the results stated in the present section.

6.3 Proof of the main results

Proof of Theorem 6.2. Consider p ∈ V and ΓZ(t, p) a global trajectory of

p satisfying ΓZ(0, p) = p. If there exists a time t0 > 0 such that ΓZ(t, p)

does not collide with Σ for t > t0 then we can apply the classical Poincaré-

Bendixson Theorem in order to conclude that one of the three first cases (i),
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(ii) or (iii) happens. Otherwise, there exists a sequence (ti) ⊂ R of positive

times, ti → +∞, such that pi = ΓZ(ti, p) ∈ Σ.

The hypothesis that we do not have sliding motion implies Xf(pi) ·
Y f(pi) ≥ 0 with Xf(pi) = 0 ⇔ Y f(pi) = 0. Indeed, for each i ∈ N we say

that pi ∈ T (p) if one of the following cases happens: (i) Xf(pi) · Y f(pi) > 0

or (ii) Xf(pi) = Y f(pi) = 0 and the local trajectory of pi is unique. If

Xf(pi) = Y f(pi) = 0 and pi may follow two distinct paths of local trajec-

tory then we say that pi ∈ N(p). Observe that, by hypothesis, N(p) is a

finite set. We separate the proof in two cases: T (p) is finite and T (p) is not

finite.

Assume that T (p) is a finite set. We denote by np and tp the number of

elements of the sets N(p) and T (p) respectively. According to Definition 1.4,

a global trajectory of Z by pl ∈ N(p) can follows one of two distinct paths.

Let us denote by Γm an arc of ΓZ(t, p) connecting two consecutive points pi

and pi+1, i ∈ N. In this case there exists at most 2np + tp arcs Γm of ΓZ(t, p).

So, there exists a (sub)set Υ ⊂ {1, 2, . . . , 2np + tp} such that Γ =
⋃

j∈Υ Γj is

a closed orbit intersecting Σ (i.e., a pseudo cycle) contained in ΓZ(t, p) and

with the property that ΓZ(t, p) visit each arc Γj of Γ an infinite number of

times. In what follows we prove that ω(ΓZ(t, p)) = Γ. In fact, as ΓZ(t, p)

must visit each arc Γj of Γ an infinite number of times then Γ ⊂ ω(ΓZ(t, p)).

On the other hand, if x0 ∈ ω(ΓZ(t, p)) then there exists a sequence (sk) ⊂ R,

sk → +∞, such that ΓZ(sk, p) = xk → x0. Moreover, since ΓZ(t, p) also

is composed by a finite number of arcs Γm, sk → +∞ and ΓZ(t, p) has no

equilibria (otherwise it does not visit Σ infinitely many times), there exists

a subsequence (xkj ) of (xk) that visits some arcs Γm infinitely many times.

Since Γ includes all arcs Γj for which the global trajectory visit Γj for an

infinite sequence of times, xkj ∈ Γ a compact set, and consequently x0 ∈ Γ.

Now assume that T (p) is not a finite set. In this case, there exist a point

q ∈ Σ and a subsequence (tij ) = (sj) of (ti) such that

lim
j→∞

ΓZ(sj, p) = q (6.1)

since Γ+
Z(t, p) ⊂ K, a compact set. Observe that q ∈ ω(ΓZ(t, p))∩Σ ≠ ∅. As
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x1

x2

x3

Σx0

ΓZ(t, p)

Figure 6.3: Case where there exists a s-singular tangency in ω(ΓZ(t, p)) ∩ Σ.

we do not have sliding motion, for each x ∈ ω(ΓZ(t, p)) ∩ Σ, we have only

two options for it: either x is a s-singular tangency or x is a regular point.

If there exists x0 ∈ ω(ΓZ(t, p))∩Σ a s-singular tangency then ω(ΓZ(t, p))

= {x0}. In fact, when both X and Y have an invisible tangency point at x0

and there exists a sequence (sk) ⊂ R, sk → +∞, such that ΓZ(sk, p) = xk →
x0 then there is a small neighborhood Vx0

of x0 in V such that all trajectory

of Z that starts at a point of Vx0
converges to x0. See Figure 6.3. Therefore,

ω(ΓZ(t, p)) = {x0} and x0 = q.

Suppose now that all points in ω(ΓZ(t, p)) ∩ Σ are regular ones. Again

we separate the analysis in two cases: either ω(ΓZ(t, p)) contains equilibria

or contains no equilibria. Consider the case when ω(ΓZ(t, p)) contains no

equilibria. Let q as in Equation (6.1). If q ∈ T (q) then it is clear that

the local trajectory passing through q is unique and ΓZ(ε, q) ∈ ω(ΓZ(t, p))

for ε > 0 sufficiently small. If q ∈ N(q) then q is a visible tangency for

both X and Y . So, there are two possible choices for the positive local

trajectory of Z passing through q and at least one of them is such that

it is contained in ω(ΓZ(t, p)). By continuity, the global trajectory Γ(t, q)

of Z that passes through q, contained in ω(ΓZ(t, p)), must come back to

a neighborhood Vq of q in Σ. The late affirmation is true, because if it

does not come back then it remains in Σ+ or in Σ−. So, the set ω(Γ(t, q))

is a periodic orbit of X or Y , because there are no equilibrium points in

ω(ΓZ(t, p)). But it is a contradiction with the fact that the orbit ΓZ(t, p)

must visit any neighborhood of q infinitely many times. Moreover, by the
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Jordan Curve Theorem, Γ(t, q) ∩ Vq = {q}, otherwise there exists a flow box

not containing q for which Γ(t, q) and, consequently, Γ(t, p), do not depart

it. This is a contradiction with the fact that the orbit ΓZ(t, p) must visit any

neighborhood of q infinite many times. Therefore, ΓZ(t, q) is closed (i.e., is

a pseudo cycle) and ω(ΓZ(t, p)) = ΓZ(t, q).

The remaining case is when ω(ΓZ(t, p)) has equilibria either of X or of

Y . In this case for each regular point q ∈ ω(ΓZ(t, p)) consider the local orbit

ΓZ(t, q) which is contained in ω(ΓZ(t, p)). The set ω(ΓZ(t, q)) can not be a

periodic orbit or a graph contained in Σ+ or in Σ−, because the orbit ΓZ(t, p)

must visit any neighborhood of q infinite many times. So, the unique option is

that ω(ΓZ(t, q)) = {zi} where zi is an equilibrium of X or of Y . Similarly, the

α-limit set α(ΓZ(t, q)) = {zj} where zj is an equilibrium of X or of Y . Thus,

with an appropriate ordering of the equilibria zk, k = 1, 2 . . . , m, (which may

not be distinct) and regular orbits Γk ⊂ ω(ΓZ(t, p)), k = 1, 2 . . . , m, we have

α(Γk) = zk and ω(Γk) = zk+1

for k = 1, . . . , m, where zm+1 = z1. It follows that the global trajectory

ΓZ(t, p) either spirals down to or out toward ω(ΓZ(t, p)) as t → +∞. It means

that in this case ω(ΓZ(t, p)) is a pseudo graph composed by the equilibria zk

and the arcs Γk connecting them, k = 1, . . . , m.

This concludes the proof of Theorem 6.2.

Now we perform the proof of Corollary 6.1. Example 6.2 presented before

illustrates its consequences.

Proof of Corollary 6.1. In fact, since by Definition 6.1 the ω-limit set of a

point is the union of the ω-limit set of all global trajectories passing through

it, the conclusion is obvious.

6.4 Discussions and conclusions

In this chapter we concerned with limit sets and minimal sets for non-smooth

systems presenting no sliding motion. We presented a new definition of
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limit sets of points and trajectories by considering the non-uniqueness of

trajectories through some tangential points. Under these new definitions, we

checked that limit sets may be lightly different from those ones which appear

in smooth systems, in the sense that it can be a union of some objects and

consequently disconnected.

In the highlight of the chapter, we present a version of the classical

Poincaré-Bendixson Theorem for non-smooth systems considering that the

switching manifold satisfies Σ = Σc ∪ Σt. The result that we obtained pro-

vide us natural extensions of the limit sets occurring in smooth systems.

Nevertheless, it suggest that considering non-smooth systems while avoiding

sliding motion is a first safe step in order to build the statements of this new

theory of dynamical systems concerned with non-smooth objects. Indeed,

the overwork is deal with some points on the switching manifold which are

visible tangencies of both systems, once in this (only) case we do not achieve

uniqueness of trajectories.

In the second spotlight of the chapter we provide a trivial lemma of the

Poincaré-Bendixson Theorem which concerned with minimal sets. We veri-

fied that as the smooth case, in the context of such theorem the minimal sets

are an essential part of the limit sets. Indeed, it is a simplified extension of

the Denjoy-Schwartz Theorem once extends the minimal sets to s-singular

tangencies and pseudo cycles of kind I, apart from equilibrium points and

periodic orbits. In particular, they are all trivial. In particular, it says that

we can not obtain the examples of minimal sets of Chapters 4 and 5 achiev-

ing positive Lebesgue measure. Indeed, a corollary of this fact is that sliding

motion is a necessary condition in order to obtain non-trivial minimal sets.

Finally, we stress out that this chapter is close related with Chapters 4

and 5. Indeed, in this thesis we only made a didactic separation in order

to smooth the reading and contrast the different themes throughout them.

Indeed, these three chapters are part of the two sequential coupled papers

[13] and [12], the first one in its preprint version and the second one to appear

in the journal Ergodic Theory and Dynamical Systems.
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trajectories and Poincaré Index of Non-Smooth Vector Fields on the

Plane, Journal of Dynamical and Control Systems 19 (2013), 173–193.

[15] C.A. Buzzi, T. de Carvalho, M.A. Teixeira, On 3-parameter

families of piecewise smooth vector fields in the plane, SIAM J. Applied

Dynanical Systems 11 (2012), 1402–1424.

[16] C.A. Buzzi, T. de Carvalho, M.A. Teixeira, On three-parameter

families of Filippov systems − The Fold-Saddle singularity, Int. J. Bif.

Chaos 22 (2012), 1250291-1–1250291-18.
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